This work examines the role of particle-scale inertia in a monodisperse suspension of non-Brownian and neutrally buoyant spherical particles subjected to simple-shear flow. The dimensionless parameters governing the problem are the solid-volume fraction ϕ and the Reynolds number defined Re=ργ̇a2μ, where a is the sphere radius, γ̇ is the shear rate, and μ and ρ are the viscosity and density of the fluid, respectively. Using numerical simulations in a wall-bounded domain via the lattice-Boltzmann method, the bulk rheological properties of relative viscosity, normal stress differences, and particle pressure are reported for 0.01Re<5 and 0.05ϕ0.3. The anisotropy in microstructure at finite Re is studied through the pair distribution function g(r). Also presented are the probability density functions of particle velocity fluctuations in gradient and vorticity directions. Comparisons to low Reynolds number theory and simulations are provided wherever possible.

1.
G. K.
Batchelor
, “
The stress system in a suspension of force free particles
,”
J. Fluid Mech.
41
,
545
(
1970
).
2.
F. A.
Gadala-Maria
, “
The rheology of concentrated suspension
,” Ph.D. thesis,
Stanford University
,
1979
.
3.
I. E.
Zarraga
,
D. A.
Hill
, and
D. T.
Leighton
, “
The characterization of the total stress of concentrated suspensions of non-colloidal spheres in Newtonian fluids
,”
J. Rheol.
44
,
185
(
2000
).
4.
A.
Singh
and
P. R.
Nott
, “
Experimental measurements of the normal stresses in sheared Stokesian suspensions
,”
J. Fluid Mech.
490
,
293
(
2003
).
5.
H. A.
Barnes
, “
Shear-thickening (dilatancy) in suspensions of nonaggregating solid particles dispersed in Newtonian liquids
,”
J. Rheol.
33
,
329
(
1989
).
6.
J. F.
Brady
and
G.
Bossis
, “
The rheology of concentrated suspensions in simple shear flow by numerical simulations
,”
J. Fluid Mech.
155
,
105
(
1985
).
7.
J. F.
Brady
and
G.
Bossis
, “
Stokesian dynamics
,”
Annu. Rev. Fluid Mech.
20
,
111
(
1988
).
8.
A.
Sierou
and
J. F.
Brady
, “
Accelerated Stokesian dynamics simulations
,”
J. Fluid Mech.
448
,
115
(
2001
).
9.
F.
Parsi
and
F.
Gadala-Maria
, “
Fore-and-aft asymmetry in a concentrated suspension of solid spheres
,”
J. Rheol.
31
,
725
(
1987
).
10.
J. F.
Brady
and
J. F.
Morris
, “
Microstructure of strongly sheared suspensions and its impact on rheology and diffusion
,”
J. Fluid Mech.
348
,
103
(
1997
).
11.
D. R.
Foss
and
J. F.
Brady
, “
Structure, diffusion and rheology of Brownian suspensions by Stokesian dynamics simulation
,”
J. Fluid Mech.
407
,
167
(
2000
).
12.
J. F.
Morris
and
B.
Katyal
, “
Microstructure from simulated Brownian suspension flows at large shear rate
,”
Phys. Fluids
14
,
1920
(
2002
).
13.
A.
Sierou
and
J. F.
Brady
, “
Rheology and microstructure in concentrated noncolloidal suspensions
,”
J. Rheol.
46
,
1031
(
2002
).
14.
J. F.
Morris
and
F.
Boulay
, “
Curvilinear flows of noncolloidal suspensions: the role of normal stresses
,”
J. Rheol.
43
,
1213
(
1999
).
15.
P. R.
Nott
and
J. F.
Brady
, “
Pressure-driven flow of suspensions: simulation and theory
,”
J. Fluid Mech.
275
,
157
(
1994
).
16.
R. E.
Hampton
,
A. A.
Mammoli
,
A. L.
Graham
,
N.
Tetlow
, and
S. A.
Altobelli
, “
Migration of particles undergoing pressure-driven flow in a circular conduit
,”
J. Rheol.
41
,
621
(
1997
).
17.
C. J.
Lin
,
J. H.
Peery
, and
W. R.
Showalter
, “
Simple shear flow round a rigid sphere: inertial effects and suspension rheology
,”
J. Fluid Mech.
44
,
1
(
1970
).
18.
J.
Feng
,
H. H.
Hu
, and
D. D.
Joseph
, “
Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. Part 2. Couette and Poiseuille flows
,”
J. Fluid Mech.
277
,
271
(
1994
).
19.
P. Y.
Huang
and
D. D.
Joseph
, “
Effects of shear thinning on migration of neutrally-buoyant particles in pressure driven flow of Newtonian and viscoelastic fluid
,”
J. Non-Newtonian Fluid Mech.
90
,
159
(
2000
).
20.
A. J. C.
Ladd
, “
Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation
,”
J. Fluid Mech.
271
,
285
(
1994
).
21.
A. J. C.
Ladd
, “
Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results
,”
J. Fluid Mech.
271
,
311
(
1994
).
22.
C. K.
Aidun
,
Y.
Lu
, and
E. J.
Ding
, “
Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation
,”
J. Fluid Mech.
373
,
287
(
1998
).
23.
A. J. C.
Ladd
and
R.
Verberg
, “
Lattice-Boltzmann simulations of particle-fluid suspensions
,”
J. Stat. Phys.
104
,
1191
(
2001
).
24.
J.
Kromkamp
,
D. T. M.
van den Ende
,
D.
Kandhai
,
R. G. M.
van der Sman
, and
R. M.
Boom
, “
Shear-induced self-diffusion and microstructure in non-Brownian suspensions at non-zero Reynolds number
,”
J. Fluid Mech.
529
,
253
(
2005
).
25.
Y.
Yan
,
J. F.
Morris
, and
J.
Koplik
, “
Hydrodynamic interaction of two particles in confined linear shear flow at finite Reynolds number
,”
Phys. Fluids
19
,
113305
(
2007
).
26.
A.
Shakib-Manesh
,
P.
Raiskinmäki
,
A.
Koponen
,
M.
Kataja
, and
J.
Timonen
, “
Shear stress in a Couette flow of liquid-particle suspensions
,”
J. Stat. Phys.
107
,
67
(
2002
).
27.
P.
Raiskinmäki
,
J. A.
Åström
,
M.
Kataja
,
M.
Latva-Kokko
,
A.
Koponen
,
A.
Jäsberg
,
A.
Shakib-Manesh
, and
J.
Timonen
, “
Clustering and viscosity in a shear flow of a particulate suspension
,”
Phys. Rev. E
68
,
061403
(
2003
).
28.
J.
Hyväluoma
,
P.
Raiskinmäki
,
A.
Kopenen
,
M.
Kataja
, and
J.
Timonen
, “
Strain-hardening in liquid-particle suspensions
,”
Phys. Rev. E
72
,
061402
(
2005
).
29.
P. M.
Kulkarni
and
J. F.
Morris
, “
Pair-sphere trajectories in finite Reynolds number shear flow
,”
J. Fluid Mech.
596
,
413
(
2008
).
30.
G. K.
Batchelor
and
J. T.
Green
, “
The hydrodynamic interaction of two small freely-moving spheres in a linear flow field
,”
J. Fluid Mech.
56
,
375
(
1972
).
31.
N. Q.
Nguyen
and
A. J. C.
Ladd
, “
Lubrication corrections for lattice-Boltzmann simulation of particle suspensions
,”
Phys. Rev. E
66
,
046708
(
2002
).
32.
S.
Kim
and
S. J.
Karrila
,
Microhydrodynamics: Principles and Selected Applications
(
Butterworth-Heinemann
,
Boston, MA
,
1991
).
33.
D. R.
Mikulencak
and
J. F.
Morris
, “
Stationary shear flow around fixed and free bodies at finite Reynolds number
,”
J. Fluid Mech.
520
,
215
(
2004
).
34.
C. A.
Kossack
and
A.
Acrivos
, “
Steady simple shear flow past a circular cylinder at moderate Reynolds number: a numerical solution
,”
J. Fluid Mech.
66
,
353
(
1974
).
35.
G.
Subramanian
and
D. L.
Koch
, “
Inertial effects on the transfer of heat or mass from neutrally buoyant spheres in a steady linear velocity field
,”
Phys. Fluids
18
,
073302
(
2006
).
36.
D. T.
Leighton
, “
The shear induced migration of particulates in concentrated suspensions
,” Ph.D. thesis,
Stanford University
,
1985
.
37.
G. K.
Batchelor
and
J. T.
Green
, “
The determination of the bulk stress in a suspension of spherical particles to order c2
,”
J. Fluid Mech.
56
,
401
(
1972
).
38.
G.
Drazer
,
J.
Koplik
,
B.
Khusid
, and
A.
Acrivos
, “
Deterministic and stochastic behavior of non-Brownian spheres in sheared suspensions
,”
J. Fluid Mech.
460
,
307
(
2002
).
39.
A. J.
Wagner
and
I.
Pagonabarraga
, “
Lees–Edwards boundary conditions for lattice Boltzmann
,”
J. Stat. Phys.
107
,
521
(
2002
).
You do not currently have access to this content.