Frequency dispersive effects on the interaction of waves and currents in a nearshore circulation system are analyzed. By means of both analytical and numerical calculations, we find that dispersive effects are important in the description of the correct amount of the wave forcing, represented, within the generalized-Lagrangian-mean-like approach, by the pseudomomentum p. They are particularly important when describing the flow using depth-averaged velocities. For some configurations, the depth-averaged current is forced not only by the nondispersive terms but also, with the same intensity, by the dispersive forcing terms. In such terms is included a vortex-force dispersive contribution, usually negligible in a small-wave amplitude approximation, which arises because of the presence of dissipative terms.

1.
M. S.
Longuet-Higgins
and
R. W.
Stewart
, “
Radiation stress and mass transport in gravity waves, with application to ‘surf-beats’
,”
J. Fluid Mech.
13
,
481
(
1962
).
2.
J.
Yu
and
D. N.
Slinn
, “
Effects of wave-current interaction on rip currents
,”
J. Geophys. Res.
108
,
3088
, DOI: 10.1029/2001JC001105 (
2003
).
3.
J. C.
McWilliams
,
J. M.
Restrepo
, and
E. M.
Lane
, “
An asymptotic theory for the interaction of waves and currents in coastal waters
,”
J. Fluid Mech.
511
,
135
(
2004
).
4.
F.
Shi
,
J. T.
Kirby
, and
K. A.
Haas
, “
Quasi-3D nearshore circulation equations: A CL-vortex force formulation
,”
Proceedings of the 30th International Conference on Coastal Engineering, ICCE 2006
(
World Scientific
,
San Diego
,
2006
), Vol.
1
, pp.
1028
1039
.
5.
A. D. D.
Craik
and
S.
Leibovic
, “
A rational model for a rational model for Langmuir circulations
,”
J. Fluid Mech.
73
,
401
(
1976
).
6.
I. A.
Svendsen
,
K. A.
Haas
, and
Q.
Zhao
, “
Quasi-3D nearshore circulation model SHORE-CIRC
,” Center for Appl. Coastal Res., Univ. of Delaware, Internal Rep., CACR-02–01, Newark, DE (
2002
).
7.
O.
Bühler
and
T. E.
Jacobson
, “
Wave-driven currents and vortex dynamics on barred beaches
,”
J. Fluid Mech.
449
,
313
(
2001
).
8.
Q.
Chen
,
J. T.
Kirby
,
R. A.
Dalrymple
,
F.
Shi
, and
E. B.
Thornton
, “
Boussinesq modeling of longshore currents
,”
J. Geophys. Res.
108
,
3362
, DOI: 10.1029/2002JC001308 (
2003
).
9.
Q.
Chen
, “
Fully nonlinear Boussinesq-type equations for waves and currents over porous beds
,”
J. Eng. Mech.
132
,
220
(
2006
).
10.
D. H.
Peregrine
, “
Surf zone currents
,”
Theor. Comput. Fluid Dyn.
10
,
295
(
1998
).
11.
A. B.
Kennedy
,
M.
Brocchini
,
L.
Soldini
, and
E.
Gutierrez
, “
Topographically-controlled, breaking wave-induced macrovortices. Part 2: Changing geometries
,”
J. Fluid Mech.
559
,
57
(
2006
).
12.
E.
Terrile
,
R.
Briganti
,
M.
Brocchini
, and
J. T.
Kirby
, “
Topographically-induced enstrophy production/dissipation in coastal models
,”
Phys. Fluids
18
,
126603
(
2006
).
13.
E.
Terrile
and
M.
Brocchini
, “
A dissipative point-vortex model for nearshore circulation
,”
J. Fluid Mech.
589
,
455
(
2007
).
14.
D. G.
Andrews
and
M. E.
McIntyre
, “
An exact theory of nonlinear waves on a Lagrangian flow
,”
J. Fluid Mech.
89
,
609
(
1978
).
15.
D. H.
Peregrine
, “
Long waves on a beach
,”
J. Fluid Mech.
27
,
815
(
1967
).
16.
J. T.
Kirby
, “
Boussinesq models and applications to nearshore wave propagation, surfzone processes and wave-induced currents
,”
Advances in Coastal Modeling
(
Elsevier
,
Amsterdam
,
2003
).
17.
G.
Wei
,
J. T.
Kirby
,
S. T.
Grilli
, and
R.
Subramanya
, “
A fully nonlinear Boussinesq model for surface waves. I: Highly nonlinear, unsteady waves
,”
J. Fluid Mech.
294
,
71
(
1995
).
18.
M. S.
Longuet-Higgins
, “
Mass transport in water waves
,”
Philos. Trans. R. Soc. London, Ser. A
245
,
535
(
1953
).
19.
O.
Bühler
, “
On the vorticity transport due to dissipating or breaking waves in shallow-water flow
,”
J. Fluid Mech.
407
,
235
(
2000
).
You do not currently have access to this content.