The turbulent air–water interface and flow structure of a weak, turbulent hydraulic jump are analyzed in detail using particle image velocimetry measurements. The study is motivated by the need to understand the detailed dynamics of turbulence generated in steady spilling breakers and the relative importance of the reverse-flow and breaker shear layer regions with attention to their topology, mean flow, and turbulence structure. The intermittency factor derived from turbulent fluctuations of the air–water interface in the breaker region is found to fit theoretical distributions of turbulent interfaces well. A conditional averaging technique is used to calculate ensemble-averaged properties of the flow. The computed mean velocity field accurately satisfies mass conservation. A thin, curved shear layer oriented parallel to the surface is responsible for most of the turbulence production with the turbulence intensity decaying rapidly away from the toe of the breaker (location of largest surface curvature) with both increasing depth and downstream distance. The reverse-flow region, localized about the ensemble-averaged free surface, is characterized by a weak downslope mean flow and entrainment of water from below. The Reynolds shear stress is negative in the breaker shear layer, which shows that momentum diffuses upward into the shear layer from the flow underneath, and it is positive just below the mean surface indicating a downward flux of momentum from the reverse-flow region into the shear layer. The turbulence structure of the breaker shear layer resembles that of a mixing layer originating from the toe of the breaker, and the streamwise variations of the length scale and growth rate are found to be in good agreement with observed values in typical mixing layers. All evidence suggests that breaking is driven by a surface-parallel adverse pressure gradient and a streamwise flow deceleration at the toe of the breaker. Both effects force the shear layer to thicken rapidly, thereby inducing a sharp free surface curvature change at the toe.

1.
H.
Rouse
,
T. T.
Siao
, and
S.
Nagarathnam
, “
Turbulence characteristics of the hydraulic jumps
,”
J. Highw. Div.
84
,
926
(
1959
).
2.
F. J.
Resch
and
H. J.
Leutheusser
, “
Reynolds stress measurements in hydraulic jumps
,”
J. Hydraul. Res.
10
,
409
(
1972
).
3.
D.
Long
,
P. M.
Steffler
, and
N.
Rajaratnam
, “
LDA structure of flow structure in submerged hydraulic jumps
,”
J. Hydraul. Res.
4
,
437
(
1990
).
4.
M.
Liu
,
N.
Rajaratnam
, and
D. Z.
Zhu
, “
Turbulence structure of hydraulic jumps of low Froude numbers
,”
J. Hydraul. Eng.
130
,
511
(
2004
).
5.
B. S.
Hyun
,
R.
Balachander
,
K.
Yu
, and
V. C.
Patel
, “
Assessment of PIV to measure mean velocity and turbulence in open-channel flow
,”
Exp. Fluids
35
,
262
(
2003
).
6.
H. G.
Hornung
,
C.
Willert
, and
S.
Turner
, “
The flow field of a hydraulic jump
,”
J. Fluid Mech.
287
,
299
(
1995
).
7.
J. M.
Lennon
and
D. F.
Hill
, “
Particle image velocimetry measurements of hydraulic and undular jumps
,”
J. Hydraul. Eng.
132
,
1283
(
2005
).
8.
J. H.
Duncan
, “
An experimental investigation of breaking waves produced by a towed hydrofoil
,”
Proc. R. Soc. London, Ser. A
377
,
331
(
1981
).
9.
J. A.
Battjes
and
T.
Sakai
, “
Velocity field in a steady breaker
,”
J. Fluid Mech.
111
,
421
(
1981
).
10.
J. H.
Duncan
, “
The breaking and non-breaking wave resistance of a two-dimensional hydrofoil
,”
J. Fluid Mech.
126
,
507
(
1983
).
11.
M. L.
Banner
, “
Surging characteristics of spilling zones of quasi-steady breaking water waves
,” in
Nonlinear Water Waves
, International Union of Theoretical and Applied Mechanics Symposium, edited by
K.
Horikawa
and
H.
Maruo
(
Springer-Verlag
, Germany,
1988
), pp.
151
158
.
12.
E. B.
Thornton
and
R. T.
Guza
, “
Transformation of wave height distribution
,”
J. Geophys. Res.
88
,
5925
, DOI: 10.1029/JC088iC10p05925 (
1983
).
13.
F. C.K.
Ting
, “
Wave and turbulence characteristics in narrow-banded irregular breaking waves
,”
Coastal Eng.
46
,
291
(
2002
).
14.
J. A.
Battjes
, “
Surf-zone dynamics
,”
Annu. Rev. Fluid Mech.
111
,
257
(
1981
).
15.
I. A.
Svendsen
,
J.
Veeramony
,
J.
Bakunin
, and
J. T.
Kirby
, “
The flow in weak turbulent hydraulic jumps
,”
J. Fluid Mech.
418
,
25
(
2000
).
16.
J.
Bakunin
, “
Experimental Study of Hydraulic Jumps in Low Froude Number Range
,” M.S. thesis, Department of Civil and Environmental Engineering, University of Delaware (
1995
).
17.
D. H.
Peregrine
and
I. A.
Svendsen
, “
Spilling breakers, bores and hydraulic jumps
,” in
Proceedings of the 16th International Conference on Coastal Engineering
(
ASCE
,
Hamburg
,
1978
), pp.
540
555
.
18.
J. W.
Hoyt
and
R. H.J.
Sellin
, “
Hydraulic jump as ‘mixing layer'
,”
J. Hydraul. Eng.
115
,
1607
(
1989
).
19.
N.
Rajaratnam
, “
The hydraulic jump as a wall jet
,”
J. Hydr. Div.
91
,
107
(
1965
).
20.
R.
Narayanan
, “
Wall jet analogy to hydaulic jump
,”
J. Hydr. Div.
101
,
347
(
1975
).
21.
H.
Chanson
and
T.
Brattberg
, “
Experimental study of the air-water shear flow in a hydraulic jump
,”
Int. J. Multiphase Flow
26
,
583
(
2000
).
22.
I. A.
Svendsen
and
P. A.
Madsen
, “
A turbulent bore on a beach
,”
J. Fluid Mech.
148
,
73
(
1984
).
23.
R.
Cointe
and
M. P.
Tulin
, “
A theory of steady breakers
,”
J. Fluid Mech.
276
,
1
(
1994
).
24.
S. H.
Rhee
and
F.
Stern
, “
RANS model for spilling breaking waves
,”
J. Fluids Eng.
124
,
424
(
2002
).
25.
F. M.
Henderson
,
Open Channel Flow
(
MacMillan
,
New York
,
1970
).
26.
V. T.
Chow
,
Open Channel Hydraulics
(
McGraw-Hill
,
New York
,
1959
).
27.
M. R.
Maxey
, “
The gravitational settling of aerosol particles in homogenous turbulence and random flow fields
,”
J. Fluid Mech.
174
,
441
(
1987
).
28.
Q.
Wang
,
K. D.
Squires
, and
L.
Wang
, “
On the effect of nonuniform seeding on particle dispersion in two-dimensional mixing layers
,”
Phys. Fluids
10
,
1700
(
1998
).
29.
Y. A.
Hassan
,
K.
Okamoto
, and
O. G.
Philip
, “
Investigation of the interaction between a fluid flow and the fluid’s free surface using particle image velocimetry
,” in
9th International Symposium on Transport Phenomena in Thermal-Fluids Engineering
edited by
S. H.
Winoto
,
Y. T.
Chew
, and
N. E.
Wijeysundera
(
1996
), pp.
566
574
.
30.
W. L.
Peirson
, “
Measurement of surface velocities and shear at a wavy air-water interface using particle image velocimetry
,”
Exp. Fluids
23
,
427
(
1997
).
31.
C. N.S.
Law
,
B. C.
Khoo
, and
T. C.
Chen
, “
Turbulence structure in the immediate vicinity of the shear-free air-water interface induced by a deeply submerged jet
,”
Exp. Fluids
27
,
321
(
1999
).
32.
H. J.
Lin
and
M.
Perlin
, “
Improved methods for thin, surface boundary layer investigations
,”
Exp. Fluids
25
,
431
(
1998
).
33.
L.
Tsuei
and
T.
Savaş
, “
Treatment of interfaces in particle image velocimetry
,”
Exp. Fluids
29
,
203
(
2000
).
34.
S. K.
Misra
,
M.
Thomas
,
C.
Kambhamettu
,
J. T.
Kirby
,
F.
Veron
, and
M.
Brocchini
, “
Estimation of complex air-water interfaces from PIV images
,”
Exp. Fluids
40
,
764
(
2005
).
35.
F.
Veron
,
G.
Saxena
, and
S. K.
Misra
, “
Measurements of the viscous tangential stress in the airflow above wind waves
,”
Geophys. Res. Lett.
34
,
L05402
, DOI: 10.1029/2006GL029147 (
2007
).
36.
H.
Chanson
,
Air Bubble Entrainment in Free-Surface Turbulent Shear Flows
(
Academic
,
New York
,
1996
).
37.
H.
Chanson
and
J. S.
Montes
, “
Characteristics of undular hydraulic jumps. Experimental apparatus and flow patterns
,”
J. Hydraul. Eng.
121
,
129
(
1995
).
38.
J. H.
Duncan
, “
Spilling breakers
,”
Annu. Rev. Fluid Mech.
33
,
519
(
2001
).
39.
H.
Qiao
and
J. H.
Duncan
, “
Gentle spilling breakers: Crest flow-field evolution
,”
J. Fluid Mech.
439
,
57
(
2001
).
40.
M. S.
Longuet-Higgins
, “
Shear instability in spilling breakers
,”
Proc. R. Soc. London, Ser. A
446
,
399
(
1994
).
41.
J. H.
Duncan
,
H.
Qiao
,
V.
Philomin
, and
A.
Wenz
, “
Gentle spilling breakers: Crest profile evolution
,”
J. Fluid Mech.
379
,
191
(
1999
).
42.
M.
Brocchini
and
D. H.
Peregrine
, “
The dynamics of strong turbulence at free surfaces. Part 2. Free-surface boundary conditions
,”
J. Fluid Mech.
449
,
255
(
2001
).
43.
D.
Dabiri
and
M.
Gharib
, “
Experimental investigation of the vorticity generation within a spilling water wave
,”
J. Fluid Mech.
330
,
113
(
1997
).
44.
J. C.
Lin
and
D.
Rockwell
, “
Evolution of a quasisteady breaking wave
,”
J. Fluid Mech.
302
,
29
(
1995
).
45.
H. A.
Schaffer
,
P. A.
Madsen
, and
R.
Deigaard
, “
A Boussinesq model for waves breaking in shallow water
,”
Coastal Eng.
20
,
185
(
1993
).
46.
R.
Briganti
,
R. E.
Musumeci
,
G.
Bellotti
,
M.
Brocchini
, and
E.
Foti
, “
Boussinesq modeling of breaking waves: Description of turbulence
,”
J. Geophys. Res.
109
,
C07015
, DOI: 10.1029/2003JC002065 (
2004
).
47.
N.
Salvesen
and
C.
von Kerczek
, “
Nonlinear aspects of free-surface flow past two-dimensional bodies
,” in
14th International Union of Theoretical and Applied Mechanics Delft
(
Springer-Verlag
,
Germany
,
1976
).
48.
M. S.
Longuet-Higgins
, “
A model of flow separation at a free surface
,”
J. Fluid Mech.
57
,
129
(
1973
).
49.
R. A.
Antonia
, “
Conditional sampling in turbulent measurement
,”
Annu. Rev. Fluid Mech.
13
,
131
(
1981
).
50.
S.
Corrsin
and
A. L.
Kistler
, “
Free-stream boundaries of turbulent flows
,”
National Advisory Committee for Aeronautics
, Washington, Report No. 1244 (
1955
), p.
1244
, available at htpp://naca.central.cranfield.ac.uk/reports/1955/naca-report-1244.pdf.
51.
J. M.
Killen
and
A. G.
Anderson
, “
A study of the air-water interface in air-entrained flow in open channels
,” in
Proceedings of the 13th International Association of Hydrautic Engineering and Research Congress
,
Kyoto, Japan
(
1969
).
52.
D. A.
Ervine
and
H. T.
Falvey
, “
Behavior of turbulent water jets in the atmosphere and in plunge pools
,” in
Proceedings of the Institute of Civil Engineering
(
Thomas Telford
,
London
,
1987
), Part 2, Vol.
83
, pp.
295
314
.
53.
M.
Brocchini
and
D. H.
Peregrine
, “
Integral flow properties of the swash zone and averaging
,”
J. Fluid Mech.
317
,
241
(
1996
).
54.
M.
Thomas
,
S. K.
Misra
,
C.
Kambhamettu
, and
J. T.
Kirby
, “
A robust motion estimation algorithm for PIV
,”
Meas. Sci. Technol.
16
,
865
(
2005
).
55.
J.
Nogueira
,
A.
Lecuona
, and
P. A.
Rodriguez
, “
Limits on the resolution of correlation PIV iterative methods. Fundamentals
,”
Exp. Fluids
39
,
305
(
2005
).
56.
E. H.
Wilson
and
A. A.
Turner
, “
Boundary layer effects on hydraulic jump location
,”
J. Hydr. Div.
98
,
1127
(
1972
).
57.
M. S.
Longuet-Higgins
and
J. S.
Turner
, “
An ‘entraining plume’ model of a spilling breaker
,”
J. Fluid Mech.
63
,
1
(
1974
).
58.
D. T.
Walker
,
D. R.
Lyzenga
,
E. A.
Ericson
, and
D. E.
Lund
, “
Radar backscatter and surface roughness measurements for stationary breaking waves
,”
Proc. R. Soc. London, Ser. A
452
,
1953
(
1996
).
59.
U.
Ullum
,
J. J.
Schmidt
,
P. S.
Larsen
, and
D. R.
McCluskey
, “
Statistical analysis and accuracy of PIV data
,”
J. Visualization
1
,
205
(
1998
).
60.
P.
Bradshaw
, “
Effects of streamline curvature on turbulent flow
,” AGARDograph, Vol.
169
(
1973
).
61.
S. K.
Misra
,
J. T.
Kirby
,
M.
Brocchini
,
M.
Thomas
,
F.
Veron
, and
C.
Kambhamettu
, “
Extra strain rates in spilling breaking waves
,” in
Proceedings of the 29th International Conference on Coastal Engineering, Lisbon
(
ASCE
,
Reston, Virginia
,
2004
). pp.
370
378
.
62.
H.
Tennekes
and
J. L.
Lumley
,
A First Course in Turbulence
(
MIT
,
Cambridge
,
1972
).
63.
G. L.
Brown
and
A.
Roshko
, “
On density effects and large structures in turbulent mixing layers
,”
J. Fluid Mech.
64
,
775
(
1974
).
64.
A. A.
Townsend
,
The Structure of Turbulent Shear Flow
, 2nd ed. (
Cambridge University Press
,
Cambridge
,
1976
).
65.
J. H.
Duncan
and
A.
Dimas
, “
Surface ripples due to steady breaking waves
,”
J. Fluid Mech.
329
,
309
(
1996
).
66.
R. L.
Simpson
, “
Turbulent boundary layer separation
,”
Annu. Rev. Fluid Mech.
21
,
205
(
1989
).
67.
M. L.
Banner
and
O. M.
Phillips
, “
On the incipient breaking of small scale waves
,”
J. Fluid Mech.
65
,
647
(
1974
).
You do not currently have access to this content.