The drag coefficient for freely falling cones with a vertex angle of 60° was determined experimentally in the Reynolds number range from 90 to 8×103 and described by empirical equations. The drag was determined by measurement of the terminal velocity of the cones falling through water. Flow-visualization experiments showed the different regimes of the wake structure for a wide range of the Reynolds numbers covering the successive destabilizations of the wake on the way to turbulence. Especially, a very regular staggered array of two rows of ring-shaped hairpin vortices appeared behind the cones in the Reynolds number range from 170 to 235. The Strouhal number was determined in the Reynolds number range from 170 to 1.2×103. The arrangement of the double row of vortex rings and the oscillatory motion of the cones were given in some detail.

1.
J. F.
Douglas
,
J. M.
Gasiorek
, and
J. A.
Swaffield
,
Fluid Mechanics
(
Pitman
,
London
,
1979
), p.
711
.
2.
M. J.
Gluckman
,
S.
Weinbaum
, and
R.
Pfeffer
, “
Axisymmetric slow viscous flow past an arbitrary convex body of revolution
,”
J. Fluid Mech.
55
,
677
(
1972
).
3.
A.
Goldburg
and
B. H.
Florsheim
, “
Transition and Strouhal number for the incompressible wake of various bodies
,”
Phys. Fluids
9
,
45
(
1966
).
4.
J. R.
Calvert
, “
Experiments on the low-speed flow past cones
,”
J. Fluid Mech.
27
,
273
(
1967
).
5.
J. W.
Kim
and
P. J.
Morris
, “
Computation of subsonic inviscid flow past a cone using high-order schemes
,”
AIAA J.
40
,
1961
(
2002
).
6.
M.
Jenny
,
G.
Bouchet
, and
J.
Dušek
, “
Nonvertical ascension or fall of a free sphere in a Newtonian fluid
,”
Phys. Fluids
15
,
L9
(
2003
).
7.
M.
Jenny
,
J.
Dušek
, and
G.
Bouchet
, “
Instabilities and transition of a sphere falling or ascending freely in a Newtonian fluid
,”
J. Fluid Mech.
508
,
201
(
2004
).
8.
ISO
,
Guide to the Expression of Uncertainty in Measurement
(
International Organization for Standardization
,
Geneva, Switzerland
,
1995
), p.
9
.
9.
V.
Fidleris
and
R. L.
Whitmore
, “
Experimental determination of the wall effect for spheres falling axially in cylindrical vessels
,”
Br. J. Appl. Phys.
12
,
490
(
1961
).
10.
E. C.
Maskell
, “
A theory of the blockage effects on bluff bodies and stalled wings in a closed wind tunnel
,”
Aeronautical Research Council
, Reports and Memoranda, No. 3400,
1965
.
11.
H. B.
Awbi
and
S. H.
Tan
,
“Effect of wind-tunnel walls on the drag of a sphere
,”
J. Fluids Eng, Trans. Am. Soc. Mech. Eng.
103
,
461
(
1981
).
12.
P. H. T.
Uhlherr
and
R. P.
Chhabra
, “
Wall effect for the fall of spheres in cylindrical tubes at high Reynolds number
,”
Can. J. Chem. Eng.
73
,
918
(
1995
).
13.
V. J.
Modi
and
T.
Akutsu
, “
Wall confinement effects for spheres in the Reynolds number range of 30‐2000
,”
J. Fluids Eng, Trans. Am. Soc. Mech. Eng.
106
,
66
(
1984
).
14.
W. W.
Willmarth
,
N. E.
Hawk
, and
R. L.
Harvey
, “
Steady and unsteady motions and wakes of freely falling disks
,”
Phys. Fluids
7
,
197
(
1964
).
15.
R. G.
Lunnon
, “
Fluid resistance to moving spheres
,”
Proc. R. Soc. London
118
,
680
(
1928
).
16.
K.
Watanabe
,
H.
Ohira
,
T.
Oki
, and
H.
Kato
, “
Acceleration ranges for freely falling spheres in suspensions (in Japanese)
,”
Trans. Jpn. Soc. Mech. Eng.
58
,
2041
(
1992
).
17.
D.
Ormières
and
M.
Provansal
, “
Transition to turbulence in the wake of a sphere
,”
Phys. Rev. Lett.
83
,
80
(
1999
).
18.
L.
Schouveiler
and
M.
Provansal
, “
Self-sustained oscillations in the wake of a sphere
,”
Phys. Fluids
14
,
3846
(
2002
).
19.
D. G.
Karamanev
and
L. N.
Nikolov
, “
Free rising spheres do not obey Newton’s law for free settling
,”
AIChE J.
38
,
1843
(
1992
).
20.
D. G.
Karamanev
,
C.
Chavarie
, and
R. C.
Mayer
, “
Dynamics of the free rise of a light solid sphere in liquid
,”
AIChE J.
42
,
1789
(
1996
).
21.
C.
Veldhuis
,
A.
Biesheuvel
,
L.
van Wijngaarden
, and
D.
Lohse
, “
Motion and wake structure of spherical particles
,”
Nonlinearity
18
,
C1
(
2005
).
22.
R. H.
Perry
and
C. H.
Chilton
,
Chemical Engineers’ Handbook
, 5th ed. (
McGraw-Hill
,
London
,
1974
), Sec. 5, p.
64
.
23.
C.
Wieselsberger
, “
Weitere Feststellungen über die Gesetze des Flüssigkeits- und Luftwiderstandes
,”
Phys. Z.
23
,
219
(
1922
).
24.
F. W.
Roos
and
W. W.
Willmarth
, “
Some experimental results on sphere and disk drag
,”
AIAA J.
9
,
285
(
1971
).
25.
J.
Schmiedel
, “
Experimentelle Untersuchungen über die Fallbewegung von Kugeln und Scheiben in reibenden Flüssigkeiten
,”
Phys. Z.
29
,
593
(
1928
).
26.
P. C.
Fernandes
,
F.
Risso
,
P.
Ern
, and
J.
Magnaudet
, “
Oscillatory motion and wake instability of freely rising axisymmetric bodies
,”
J. Fluid Mech.
573
,
479
(
2007
).
27.
L.
Schiller
, “
Fallversuche mit Kugeln und Scheiben
,” in
Handbuch der Experimentalphysik
, edited by
W.
Wien
and
F.
Harms
(
Akademische Verlagsgesellschaft
,
Leipzig
,
1932
), Vol.
4
, No. 2, p.
347
.
28.
H. R.
Pruppacher
,
B. P.
Le Clair
, and
A. E.
Hamielec
, “
Some relations between drag and flow pattern of viscous flow past a sphere and a cylinder at low and intermediate Reynolds numbers
,”
J. Fluid Mech.
44
,
781
(
1970
).
29.
R. L.
Pitter
,
H. R.
Pruppacher
, and
A. E.
Hamielec
, “
A numerical study of viscous flow past a thin oblate spheroid at low and intermediate Reynolds numbers
,”
J. Atmos. Sci.
30
,
125
(
1973
).
30.
H.
Sakamoto
and
H.
Haniu
, “
A study on vortex shedding from spheres in a uniform flow
,”
J. Fluids Eng, Trans. Am. Soc. Mech. Eng.
112
,
386
(
1990
).
31.
I.
Nakamura
, “
Steady wake behind a sphere
,”
Phys. Fluids
19
,
5
(
1976
).
32.
R. H.
Magarvey
and
R. L.
Bishop
, “
Transition ranges for three-dimensional wakes
,”
Can. J. Phys.
39
,
1418
(
1961
).
33.
R. H.
Magarvey
and
R. L.
Bishop
, “
Wakes in liquid-liquid systems
,”
Phys. Fluids
4
,
800
(
1961
).
34.
E.
Achenbach
, “
Vortex shedding from spheres
,”
J. Fluid Mech.
62
,
209
(
1974
).
35.
T. A.
Johnson
and
V. C.
Patel
, “
Flow past a sphere up to a Reynolds number of 300
,”
J. Fluid Mech.
378
,
19
(
1999
).
36.
T.
Leweke
,
M.
Provansal
,
D.
Ormières
, and
R.
Lebescond
, “
Vortex dynamics in the wake of a sphere
,”
Phys. Fluids
11
,
S12
(
1999
).
37.
R.
Mittal
, “
Planar symmetry in the unsteady wake of a sphere
,”
AIAA J.
37
,
388
(
1999
).
38.
R.
Mittal
, “
A Fourier-Chebyshev spectral collocation method for simulating flow past spheres and spheroids
,”
Int. J. Numer. Methods Fluids
30
,
921
(
1999
).
39.
R.
Mittal
,
J. J.
Wilson
, and
F. M.
Najjar
, “
Symmetry properties of the transitional sphere wake
,”
AIAA J.
40
,
579
(
2002
).
40.
G.
Yun
,
H.
Choi
, and
D.
Kim
, “
Turbulent flow past a sphere at Re=3700 and 104
,”
Phys. Fluids
15
,
S6
(
2003
).
41.
G.
Yun
,
D.
Kim
, and
H.
Choi
, “
Vortical structures behind a sphere at subcritical Reynolds numbers
,”
Phys. Fluids
18
,
015102
(
2006
).
42.
E.
Berger
,
D.
Scholz
, and
M.
Schumm
, “
Coherent vortex structures in the wake of a sphere and a circular disk at rest and under forced vibrations
,”
J. Fluids Struct.
4
,
231
(
1990
).
43.
G.
Constantinescu
and
K.
Squires
, “
Numerical investigations of flow over a sphere in the subcritical and supercritical regimes
,”
Phys. Fluids
16
,
1449
(
2004
).
44.
H. J.
Kim
and
P. A.
Durbin
, “
Observations of the frequencies in a sphere wake and of drag increase by acoustic excitation
,”
Phys. Fluids
31
,
3260
(
1988
).
You do not currently have access to this content.