Using similarity analysis, the scales and similarity constraints for a favorable pressure gradient (FPG) turbulent boundary layer with eventual quasilaminarization are obtained. In order to achieve equilibrium in the boundary layer, the pressure parameter Λ must be a constant; thus, a power relation between the boundary layer thickness δ and the free-stream velocity U exists. Consequently, the power is given by the pressure parameter Λ as δU1/Λ. Through an analysis using the pressure parameter, two quadrants are found: quadrant I describes FPG turbulent flows and quadrant II corresponds to quasilaminar flows. Moreover, a horizontal line exists for zero pressure gradient flows. Different values of the pressure parameter are found for equilibrium FPG flows, contrary to the findings of Castillo and George [“Similarity analysis for turbulent boundary layer with pressure gradient: Outer flow,” AIAA J.39, 41 (2001)]. In the case of strong FPG flows with quasilaminarization, the pressure parameter reaches a maximum value of 0.47. At this point, a sudden reduction in the skin friction of about 57% is observed and a redistribution of the Reynolds stresses throughout the boundary layer is achieved. The mean velocity deficit profiles are also found to be attenuated when scaled using the free-stream velocity U or Uδ/δ. For flows in quadrant II, a reduction in the outer flow of the u2 component of the Reynolds stress is observed, whereas the v2 and uv components nearly vanish impending quasilaminarization. Due to the presence of the u2 component in the boundary layer, the flow never reaches a full laminar state and a more uniform redistribution of the component is observed as the skin friction decreases due to the imposed FPG. Furthermore, the shape of the profile remains the same until a quasilaminar state is reached, where the profile no longer shows high values of the stress on the proximity to the wall. In addition, the production term uvdU/dy is nearly zero for flows in quadrant II. Also, the boundary layer parameters such as the shape factor H and the ratio of the displacement thickness to the boundary layer thickness, δ/δ, increase as the flow achieves a quasilaminar state.

1.
B. E.
Launder
, “
Laminarization of the turbulent boundary layer in a severe acceleration
,”
MIT Gas Turbine Laboratory
Report No. 77,
1964
.
2.
K. R.
Sreenivasan
, “
Laminarescent, relaminarizing and retransitional flows
,”
Acta Mech.
44
,
1
(
1982
).
3.
V. C.
Patel
and
M. R.
Head
, “
Reversion of turbulent to laminar flow
,”
J. Fluid Mech.
34
,
371
(
1968
).
4.
R. F.
Blackwelder
and
L. S. G.
Kovasznay
, “
Large-scale motion of a turbulent boundary layer during relaminarization
,”
J. Fluid Mech.
53
,
61
(
1972
).
5.
M. P.
Escudier
,
A.
Abdel-Hameed
,
M. W.
Johnson
, and
C. J.
Sutcliffe
, “
Laminarization and re-transition of a turbulent boundary layer subjected to favorable pressure gradient
,”
Exp. Fluids
25
,
491
(
1998
).
6.
M. B.
Jones
,
I.
Marusič
, and
A. E.
Perry
, “
Evolution and structure of sink-flow turbulent boundary layers
,”
J. Fluid Mech.
428
,
1
(
2001
).
7.
A. A.
Townsend
, “
Equilibrium layers and wall turbulence
,”
J. Fluid Mech.
11
,
97
(
1961
).
8.
J. C.
Rotta
, “
Turbulent boundary layers in incompressible flow
,”
Prog. Aerosp. Sci.
2
,
1
(
1962
).
9.
H. H.
Fernholz
and
D.
Warnack
, “
The effects of a favorable pressure gradient and of the Reynolds number on an incompressible axissymmetric turbulent boundary layer. Part 1. The turbulent boundary layer
,”
J. Fluid Mech.
359
,
329
(
1998
).
10.
D.
Warnack
and
H. H.
Fernholz
, “
The effects of a favorable pressure gradient and of the Reynolds number on an incompressible axissymmetric turbulent boundary layer. Part 2. The boundary layer with relaminarization
,”
J. Fluid Mech.
359
,
357
(
1998
).
11.
S.
Radhakrishnan
,
A.
Keating
,
U.
Piomelli
, and
A.
Silva-Lopes
, ‘‘
Large eddy simulations of high Reynolds number flow over a contoured ramp
,”
Proceedings of the 44th AIAA Aerospace Science Meeting and Exhibit
,
Reno, NV
, 9–12 January
2006
, Paper No. AIAA-2006-0899.
12.
U.
Piomelli
,
E.
Balaras
, and
A.
Pascarelli
, “
Turbulent structures in accelerating boundary layers
,”
J. Turbul.
1
,
1
(
2000
).
13.
R.
Narasimha
and
K. R.
Sreenivasan
, “
Relaminarization in highly accelerated turbulent boundary layers
,”
J. Fluid Mech.
61
,
417
(
1973
).
14.
R.
Mukund
,
P. R.
Viswanath
,
R.
Narasimha
,
A.
Prabhu
, and
J. D.
Crouch
, “
Relaminarization in highly favorable pressure gradient on a convex surface
,”
J. Fluid Mech.
566
,
97
(
2006
).
15.
W. K.
George
, “
Some new ideas for similarity of turbulent shear flows
,”
Turbulence, Heat and Mass Transfer
, Lisbon,
1994
, edited by
K.
Hanjalic
and
J. C. F.
Pereira
(
Begell House
,
New York
,
1995
), pp.
24
49
.
16.
W. K.
George
and
L.
Castillo
, “
Zero-pressure gradient turbulent boundary layer
,”
Appl. Mech. Rev.
50
,
689
(
1997
).
17.
M.
Gad-el-Hak
,
Flow Control: Passive, Active and Reactive Flow Management
(
Cambridge University Press
,
Cambridge
,
2000
).
18.
V. M.
Falkner
and
S. W.
Skan
, “
Some appropriate solutions of the boundary layer equations
,”
Philos. Mag.
12
,
865
(
1931
).
19.
L.
Castillo
and
W. K.
George
, “
Similarity analysis for turbulent boundary layer with pressure gradient: Outer flow
,”
AIAA J.
39
,
41
(
2001
).
20.
S. J.
Kline
,
W. C.
Reynolds
,
F. A.
Schraub
, and
P. W.
Runstadler
, “
The structure of turbulent boundary layers
,”
J. Fluid Mech.
30
,
741
(
1967
).
21.
H. J.
Herring
and
J. F.
Norbury
, “
Some experiments on equilibrium turbulent boundary layers in favourable pressure gradients
,”
J. Fluid Mech.
27
,
541
(
1967
).
22.
L.
Castillo
and
X.
Wang
, “
Similarity analysis for nonequilibrium turbulent boundary layers
,”
ASME J. Fluids Eng.
126
,
827
(
2004
).
23.
G. B.
Schubauer
and
P.
Klebanoff
, “
Forced mixing in boundary layers
,”
J. Fluid Mech.
8
,
10
(
1960
).
24.
R. L.
Simpson
and
Y. T.
Chew
, “
The structure of a separating turbulent boundary layer
,”
J. Fluid Mech.
113
,
23
(
1981
).
25.
R. L.
Simpson
and
J. H.
Strickland
, “
Features of a separating turbulent boundary layer in the vicinity of separation
,”
J. Fluid Mech.
79
,
553
(
1977
).
26.
R. B.
Cal
,
T. G.
Johansson
, and
L.
Castillo
, “
The effects of upstream conditions on turbulent boundary layers subject to favorable pressure gradients
,”
AIAA J.
44
,
2488
(
2006
).
27.
M.
Ichimiya
,
I.
Nakamura
, and
S.
Yamashita
, “
Properties of a relaminarizing turbulent boundary layer under a favorable pressure gradient
,”
Exp. Therm. Fluid Sci.
17
,
37
(
1998
).
28.
H.
Ludweig
and
W.
Tillman
, “
Investigations of the wall shearing stress in turbulent boundary layers
NACA
Technical Report No. TM-1285,
1950
.
29.
T.
Indinger
,
M. H.
Buschmann
, and
M.
Gad-El-Hak
, “
Mean-velocity profile of turbulent boundary layers approaching separation
,”
AIAA J.
44
,
2465
(
2006
).
30.
Y.
Maciel
,
K. -S.
Rossignol
, and
J.
Lemay
, “
Self-similarity in the outer region of adverse-pressure-gradient turbulent boundary layers
,”
AIAA J.
44
,
2450
(
2006
).
31.
L.
Castillo
and
T. G.
Johansson
, “
The effects of the upstream conditions on a low Reynolds number turbulent boundary layer with zero pressure gradient
,”
J. Turbul.
3
,
1
(
2002
).
32.
H.
Schlichting
,
Boundary Layer Theory
(
McGraw-Hill
,
New York
,
1960
).
33.
L.
Castillo
and
D.
Walker
, “
The effects of the upstream conditions on the outer flow of turbulent boundary layers
,”
AIAA J.
40
,
1292
(
2002
).
34.
J.
Österlund
, “
Experimental studies of zero pressure-gradient turbulent boundary layer flow
,” Ph.D. thesis,
KTH
,
1999
.
35.
M. V.
Zagarola
and
A. J.
Smits
, “
Mean-flow scaling of turbulent pipe flow
,”
ASME Trans. J. Fluids Eng.
373
,
33
(
1998
).
36.
L.
Castillo
,
X.
Wang
, and
W. K.
George
, “
Separation criterion for turbulent boundary layers via similarity analysis
,”
ASME J. Fluids Eng.
126
,
297
(
2004
).
You do not currently have access to this content.