The paper presents an in depth assessment of different similarity laws for the mean velocity profile in zero pressure gradient (ZPG) turbulent boundary layers (TBL's) in comparison with mostly experimental and few computational data. The emphasis is on the descriptions which are complete in the sense that a full representation of the mean velocity profile, its streamwise evolution and all integral parameters, including the friction factor and the shape factor, are provided as a function of Reynolds number. The first such complete description is the classical two-layer theory with its characteristic logarithmic mean velocity profile in the region where the two layers overlap, henceforth referred to as the “log law.” The main alternative scalings which have been proposed over the last decade have led to power law descriptions of the turbulent mean velocity profile. Since the different descriptions were calibrated with different data sets, the controversy over the relative merits of the different approaches has lingered on. The purpose of the present paper is to measure the principal competing theories against the same vast data set of more than 300 mean velocity profiles from more than twenty different sources. The results confirm the conclusions of numerous authors that the log law provides a fully self-consistent and accurate description of all the mean quantities and demonstrates conclusively that the same cannot be achieved by the competing power law theories. Along the way, it is also argued that the traditional description of the outer velocity profile in terms of a wall-normal coordinate normalized to unity at a hypothetical boundary layer “edge” δ and a “wake parameter” Π is not robust with respect to the fit of the outer velicity profile and should therefore not be used in theoretical arguments.

1.
T.
von Kármán
, “
Mechanische Ähnlichkeit und Turbulenz
,”
Nachr. Ges. Wiss. Goettingen, Math.-Phys. Kl.
1
,
58
(
1930
), also availabe as NACA TM 611, 1930.
2.
C. B.
Millikan
, “
A critical discussion of turbulent flows in channels and circular tubes
,” in
Proceedings of the 5th International Congress on Applied Mechanics
, edited by
J. P.
den Hartog
and
H.
Peters
(
Wiley
,
London, UK
,
1938
), pp.
386
392
.
3.
J. C.
Rotta
, “
Über die Theorie der turbulenten Grenzschichten
,” Mitt. M.P.I. Ström. Forschung Nr 1
(also available as
J. C.
Rotta
, NACA TM 1344,
1950
).
4.
J. C.
Rotta
, “
Turbulent boundary layers in incompressible flow
,” in
Progress in Aeronautical Sciences
, edited by
A.
Ferri
,
D.
Küchemann
, and
L. H. G.
Sterne
(
Pergamon
,
New York
,
1962
), Vol.
2
, pp.
1
219
.
5.
F. H.
Clauser
, “
The turbulent boundary layer
,”
Adv. Appl. Mech.
56
,
1
(
1956
).
6.
W. K.
George
and
L.
Castillo
, “
Zero-pressure-gradient turbulent boundary layer
,”
Appl. Mech. Rev.
50
,
689
(
1997
).
7.
W. K.
George
, “
Recent advancements toward the understanding of turbulent boundary layers
,”
AIAA J.
44
,
2435
(
2006
).
8.
G. I.
Barenblatt
, “
Scaling laws for fully developed shear flows. Part 1. Basic hypotheses and analysis
,”
J. Fluid Mech.
248
,
513
(
1993
).
9.
G. I.
Barenblatt
,
A. J.
Chorin
, and
V. M.
Prostokishin
, “
Self-similar intermediate structures in turbulent boundary layers at large Reynolds numbers
,”
J. Fluid Mech.
410
,
263
(
2000
).
10.
M.
Oberlack
, “
Unified approach for symmetries in plane parallel turbulent shear flows
,”
J. Fluid Mech.
427
,
299
(
2001
).
11.
J. M.
Österlund
, “
Experimental studies of zero pressure-gradient turbulent boundary layer flow
,” Ph.D. thesis,
Kungl Tekniska Högskolan (Royal Institute of Technology
),
1999
.
12.
R. W.
Smith
, “
Effect of Reynolds number on the structure of turbulent boundary layers
,” Ph.D. thesis,
Princeton University
,
1994
.
13.
K. A.
Chauhan
,
P. A.
Monkewitz
, and
H. M.
Nagib
, “
Criteria for assessing experiments in zero pressure gradient boundary layers
,”
Fluid Dyn. Res.
(in press).
14.
G. I.
Barenblatt
,
A. J.
Chorin
,
O. H.
Hald
, and
V. M.
Prostokishin
, “
Structure of the zero-pressure-gradient turbulent boundary layer
,”
Proc. Natl. Acad. Sci. U.S.A.
94
,
7817
(
1997
).
15.
G. I.
Barenblatt
,
A. J.
Chorin
, and
V. M.
Prostokishin
, “
Characteristic length scale of the intermediate structure in zero-pressure-gradient boundary layer flow
,”
Proc. Natl. Acad. Sci. U.S.A.
97
,
3799
(
2000
).
16.
B.
Lindgren
,
J. M.
Österlund
, and
A. V.
Johansson
, “
Evaluation of scaling laws derived from Lie group symmetry methods in turbulent boundary layers
,” in
Proceedings of the 40th Aerospace Sciences Meeting and Exhibit
,
Reno, NV
, 14–17 January
2002
, AIAA Paper No. 2002-1103.
17.
M. H.
Hites
, “
Scaling of high-Reynolds number turbulent boundary layers in the National Diagnostic Facility
,” Ph.D. thesis,
Illinois Institute of Technology
,
1997
.
18.
K.
Knobloch
and
H.-H.
Fernholz
, “
Statistics, correlations, and scaling in a turbulent boundary layer at Reδ21.15×105
,” in
IUTAM Symposium on Reynolds Number Scaling in Turbulent Flow
,
Princeton University, Princeton, NJ
, 11–13 September
2002
, edited by
A. J.
Smits
(
Springer
,
New York
,
2002
), pp.
11
16
.
19.
H. M.
Nagib
,
C.
Christophorou
, and
P. A.
Monkewitz
, “
High Reynolds number turbulent boundary layers subjected to various pressure-gradient conditions
,” in
IUTAM Symposium on One Hundred Years of Boundary Layer Research
,
DLR Göttingen, Germany
, 12–14 August
2004
, edited by
G. E. A.
Meier
and
K. R.
Sreenivasan
(
Springer
,
New York
,
2004
), pp.
383
394
.
20.
P. A.
Monkewitz
,
K. A.
Chauhan
, and
H. M.
Nagib
, “
Self-consistent high-Reynolds number asymptotics for ZPG turbulent boundary layers
,”
Phys. Fluids
19
,
115101
(
2007
).
21.
H. M.
Nagib
,
K. A.
Chauhan
, and
P. A.
Monkewitz
, “
On the asymptotic state of zero pressure gradient turbulent boundary layers
,”
Philos. Trans. R. Soc. London, Ser. A
365
,
755
(
2007
).
22.
J. M.
Bruns
, “
Experimental investigation of a three-dimensional turbulent boundary layer in an ‘S’-shaped duct
,” Ph.D. thesis,
Technische Universität Berlin
,
1998
.
23.
J.
Carlier
and
M.
Stanislas
, “
Experimental study of eddy structures in a turbulent boundary layer using particle image velocimetry
,”
J. Fluid Mech.
535
,
143
(
2005
).
24.
D. B.
DeGraaff
and
J. K.
Eaton
, “
Reynolds-number scaling of the flat-plate turbulent boundary layer
,”
J. Fluid Mech.
422
,
319
(
2000
).
25.
L. P.
Erm
, “
Low-Reynolds-number turbulent boundary layers
,” Ph.D. thesis,
University of Melbourne
,
1988
.
26.
R. I.
Karlsson
, “
Studies of skin friction in turbulent boundary layers on smooth and rough walls
,” Ph.D. thesis,
Chalmers University of Technology
,
1980
.
27.
H. M.
Nagib
,
K. A.
Chauhan
, and
P. A.
Monkewitz
, “
Scaling of high Reynolds number turbulent boundary layers
,” in
Proceedings of the Fourth AIAA Theoretical Fluid Mechanics Meeting
,
Toronto, Canada
, 6–9 June
2005
, AIAA Paper No. 2005-4810.
28.
A. M.
Naguib
, “
Inner- and outer-layer effects on the dynamics of a turbulent boundary layer
,” Ph.D. thesis,
Illinois Institute of Technology
,
1992
.
29.
T. B.
Nickels
,
I.
Marusic
,
S. M.
Hafez
,
N.
Hutchins
, and
M. S.
Chong
, “
Some predictions of the attached eddy model for a high Reynolds number boundary layer
,”
Philos. Trans. R. Soc. London, Ser. A
365
,
807
(
2007
).
30.
L. P.
Purtell
,
P. S.
Klebanoff
, and
F. T.
Buckley
, “
Turbulent boundary layer at low Reynolds number
,”
Phys. Fluids
24
,
802
(
1981
).
31.
D. W.
Smith
and
J. H.
Walker
, “
Skin-friction measurements in incompressible flow
,”
NACA
Technical Note No. 4231,
1958
.
32.
C. E.
Wark
, “
Experimental investigation of coherent structures in turbulent boundary layers
,” Ph.D. thesis,
Illinois Institute of Technology
,
1988
.
33.
H.-H.
Fernholz
and
P. J.
Finley
, “
The incompressible zero-pressure-gradient turbulent boundary layer: An assessment of the data
,”
Prog. Aerosp. Sci.
32
,
245
(
1996
).
34.
P. J. A.
Priyadarshana
and
J. C.
Klewicki
, “
Study of the motions contributing to the Reynolds stress in high and low Reynolds number turbulent boundary layers
,”
Phys. Fluids
16
,
4586
(
2004
).
35.
P. R.
Spalart
, “
Direct simulation of a turbulent boundary layer up to Reθ=1410
,”
J. Fluid Mech.
187
,
61
(
1988
).
36.
D. E.
Coles
, “
The young person's guide to the data
,” in
Computation of Turbulent Boundary Layers—1968 AFOSR-IFP-Stanford Conference
, edited by
D. E.
Coles
and
E. A.
Hirst
(
Thermoscience Division, Department of Mechanical Engineering, Stanford University
Stanford, CA
,
1968
), pp.
1
45
.
37.
A. K.
Lewkowicz
, “
An improved universal wake function for turbulent boundary layers and some of its consequences
,”
Z. Flugwiss. Weltraumforsch.
6
,
261
(
1982
).
38.
D. E.
Coles
, “
The law of the wake in the turbulent boundary layer
,”
J. Fluid Mech.
1
,
191
(
1956
).
39.
M. V.
Zagarola
and
A. J.
Smits
, “
Mean-flow scaling of turbulent pipe flow
,”
J. Fluid Mech.
373
,
33
(
1998
).
40.
J. M.
Österlund
,
A. V.
Johansson
, and
H. M.
Nagib
, “
Comment on ‘A note on the intermediate region of turbulent boundary layers’
,”
Phys. Fluids
12
,
2360
(
2000
).
41.
R. L.
Panton
, “
Evaluation of the Barenblatt–Chorin–Prostokishin power law for a boundary layer
,”
Phys. Fluids
14
,
1806
(
2002
).
42.
K. A.
Chauhan
, “
Study of canonical wall-bounded turbulent flows
,” Ph.D. thesis,
Illinois Institute of Technology
,
2007
.
43.
A. J.
Musker
, “
Explicit expression for the smooth wall velocity distribution in a turbulent boundary layer
,”
AIAA J.
17
,
655
(
1979
).
44.
N. D.
Sandham
, “
An alternative formulation of the outer law of the turbulent boundary layer
,”
DLR Göttingen
, Technical Report No. 221-91 A 10,
1991
.
45.
W. K.
George
, “
Recent advancements toward the understanding of turbulent boundary layers
,” in
Proceedings of the Fourth AIAA Theoretical Fluid Mechanics Meeting
,
Toronto, Canada
, 6–9 June
2005
, AIAA Paper No. 2005-4669.
You do not currently have access to this content.