In this work, we introduce a novel method for enhanced particle filtration using shear-modulated inertial migration in straight microchannels. Depending on their size, inertial lift causes particles to migrate toward microchannel walls. Using microchannels with high aspect ratio cross sections, the fluidic shear can be modulated, resulting in preferential equilibration of particles along the longer microchannel walls. Due to large lift forces generated in these high aspect ratio channels, complete particle filtration can be achieved in short distances even at low flow rates (Re<50). Based on this principle, we use a straight microfluidic channel with a rectangular cross section to passively and continuously filter 1.9μm polystyrene particles. Overall, the proposed technique is versatile and can be easily integrated with on-chip microfluidic systems for filtration of a wide range of particle sizes, from micro- to nanoparticles.

1.
N.
Pamme
, “
Continuous flow separations in microfluidic devices
,”
Lab Chip
7
,
1644
(
2007
).
2.
J.
Giddings
, “
Field-flow fractionation: Analysis of macromolecular, colloidal, and particulate materials
,”
Science
260
,
1456
(
1993
).
3.
B.
Gale
,
K.
Caldwell
, and
A. B.
Frazier
, “
Geometric scaling effects in electrical field flow fractionation. 2. Experimental results
,”
Anal. Chem.
74
,
1024
(
2002
).
4.
C.
Fuh
and
J. C.
Giddings
, “
Separation of submicron emulsions with centrifugal split-flow thin (SPLITT) fractionation
,”
J. Microcolumn Sep.
9
,
205
(
1997
).
5.
E.
Chmela
,
R.
Tijssen
,
M.
Blom
,
H.
Gardeniers
, and
A.
van den Berg
, “
A chip system for size separation of macromolecules and particles by hydrodynamic chromatography
,”
Anal. Chem.
74
,
3470
(
2002
).
6.
G.-T.
Wei
,
F.-K.
Liu
, and
C.
Wang
, “
Shape separation of nanometer gold particles by size-exclusion chromatography
,”
Anal. Chem.
71
,
2085
(
1999
).
7.
W.-M.
Hwang
,
C.-Y.
Lee
,
D. W.
Boo
, and
J.-G.
Choi
, “
Separation of nanoparticles in different sizes and compositions by capillary electrophoresis
,”
Bull. Korean Chem. Soc.
24
,
684
(
2003
).
8.
M.
Durr
,
J.
Kentsch
,
T.
Muller
,
T.
Schnelle
, and
M.
Stelzle
, “
Microdevices for manipulation and accumulation of micro- and nanoparticles by dielectrophoresis
,”
Electrophoresis
24
,
722
(
2003
).
9.
A.
Nilsson
,
F.
Petersson
,
H.
Jonsson
, and
T.
Laurell
, “
Acoustic control of suspended particles in micro fluidic chips
,”
Lab Chip
4
,
131
(
2004
).
10.
J. L. M.
Poiseuille
, “
Recherches sur les causes du mouvement du sang dans les. Vaisseaux capillaires
,”
Annales des Sciences Naturelles
5
,
111
(
1836
).
11.
M.
Tachibana
, “
On the behaviour of a sphere in the laminar tube flows
,”
Rheol. Acta
12
,
58
(
1973
).
12.
J.-P.
Matas
,
J.
Morris
, and
E.
Guazzelli
, “
Inertial migration of rigid spherical particles in Poiseuille flow
,”
J. Fluid Mech.
515
,
171
(
2004
).
13.
J. -P.
Matas
,
J.
Morris
, and
E.
Guazzelli
, “
Lateral forces on a sphere
,”
Oil Gas Sci. Technol.
59
,
59
(
2004
).
14.
D.
Di Carlo
,
D.
Irimia
,
R.
Tompkins
, and
M.
Toner
, “
Continuous inertial focusing, ordering, and separation of particles in microchannels
,”
Proc. Natl. Acad. Sci. U.S.A.
104
,
18892
(
2007
).
15.
B.
Chun
and
A.
Ladd
, “
Inertial migration of neutrally buoyant particles in a square duct: An investigation of multiple equilibrium positions
,”
Phys. Fluids
18
,
031704
(
2006
).
16.
G.
Segre
and
A.
Silberberg
, “
Behaviour of macroscopic rigid spheres in Poiseuille flow
,”
J. Fluid Mech.
14
,
136
(
1962
).
17.
G.
Segre
and
A.
Silberberg
, “
Radial particle displacements in Poiseuille flow of suspensions
,”
Nature (London)
189
,
209
(
1961
).
18.
Y.
Kim
and
J.
Yoo
, “
The lateral migration of neutrally-buoyant spheres transported through square microchannels
,”
J. Micromech. Microeng.
18
,
065015
(
2008
).
19.
E.
Asmolov
, “
The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number
,”
J. Fluid Mech.
381
,
63
(
1999
).
20.
A. A. S.
Bhagat
,
E. T. K.
Peterson
, and
I.
Papautsky
, “
A passive planar micromixer with obstructions for mixing at low Reynolds numbers
,”
J. Micromech. Microeng.
17
,
1017
(
2007
).
21.
A. A. S.
Bhagat
,
P.
Jothimuthu
,
A.
Pais
, and
I.
Papautsky
, “
Re-usable quick-release interconnect for characterization of microfluidic systems
,”
J. Micromech. Microeng.
17
,
42
(
2007
).
You do not currently have access to this content.