In this letter, we study the dynamics and vortex wakes of spheres rising or falling freely through a fluid. Since this problem was first considered by Newton in 1726, the conditions under which a sphere will vibrate are still not understood clearly. In our experiments, all falling spheres (where the relative density, m>1) descend rectilinearly. Although previous studies conclude that all rising spheres (m<1) vibrate, we find instead that there exists a critical value of the relative density (for example, mcrit=0.36, for Reynolds numbers 400–500) above which there is a significant regime where rising spheres do not vibrate. Lighter spheres undergo large-amplitude periodic oscillations, confined to a single vertical plane. We discover a new mode of vortex formation comprising four vortex rings formed in each cycle, distinct from previous vortex modes for fixed and tethered bodies.

1.
I.
Newton
,
Philosophiae Naturalis Principia Mathematica
, 3rd ed., translated by
I. B.
Cohen
and
A.
Whitman
(
University of California
,
Berkeley
,
1999
).
2.
A. W.
Preukschat
, “
Measurements of drag coefficients for falling and rising spheres in free motion
,” M.S. thesis,
California Institute of Technology
,
1962
.
3.
F. S.
Schmidt
, “
Zur beschleunigten Bewegung kugelförmiger Körper in widerstehenden Mitteln
,”
Ann. Phys.
61
,
633
(
1920
).
4.
J.
Schmiedel
, “
Experimentelle Untersuchungen über die Fallbewegung von Kugeln und Scheiben in reibenden Flüssigkeiten
,”
Phys. Z.
17
,
593
(
1928
).
5.
P. B.
MacCready
and
H. R.
Jex
, “
Study of sphere motion and balloon wind sensors
,”
NASA
Technical Memorandum Report No. TM X-53089,
1964
.
6.
E. B.
Christiansen
and
D. H.
Barker
, “
The effect of shape and density on the free settling of particles at high Reynolds numbers
,”
AIChE J.
11
,
145
(
1965
).
7.
G.
Kuwabara
,
S.
Chiba
, and
K.
Kono
, “
Anomalous motion of a sphere falling through water
,”
J. Phys. Soc. Jpn.
52
,
3373
(
1983
).
8.
C.
Veldhuis
,
A.
Biesheuvel
,
L.
van Wijngaarden
, and
D.
Lohse
, “
Motion and wake structure of spherical particles
,”
Nonlinearity
18
,
C1
(
2005
).
9.
M.
Jenny
,
J.
Dušek
, and
G.
Bouchet
, “
Instabilities and transition of a sphere falling or ascending freely in a Newtonian fluid
,”
J. Fluid Mech.
508
,
201
(
2004
).
10.
R.
Govardhan
and
C. H. K.
Williamson
, “
Modes of vortex formation and frequency response of a freely vibrating cylinder
,”
J. Fluid Mech.
420
,
85
(
2000
).
11.
R. N.
Govardhan
and
C. H. K.
Williamson
, “
Vortex-induced vibrations of a sphere
,”
J. Fluid Mech.
531
,
11
(
2005
).
12.
M.
Horowitz
and
C. H. K.
Williamson
, “
Dynamics of a rising and falling cylinder
,”
J. Fluids Struct.
22
,
837
(
2006
).
13.
J.
Magnaudet
and
I.
Eames
, “
The motion of high-Reynolds-number bubbles in inhomogeneous flow
,”
Annu. Rev. Fluid Mech.
32
,
659
(
2000
).
14.
H.
Sakamoto
and
H.
Haniu
, “
A study on vortex shedding from spheres in a uniform flow
,”
ASME J. Fluids Eng.
112
,
386
(
1990
).
15.
J. A.
Quinn
,
C. H.
Lin
, and
J. L.
Anderson
, “
Measuring diffusion coefficients by Taylor’s method of hydrodynamic stability
,”
AIChE J.
32
,
2028
(
1986
).
16.
R.
Mittal
, “
A Fourier–Chebyshev spectral collocation method for simulating flow past spheres and spheroids
,”
Int. J. Numer. Methods Fluids
30
,
921
(
1999
).
17.
R.
Mittal
,
J. J.
Wilson
, and
F. M.
Najjar
, “
Symmetry properties of the transitional sphere wake
,”
AIAA J.
40
,
579
(
2002
).
18.
R. H.
Magarvey
and
R. L.
Bishop
, “
Wakes in liquid-liquid systems
,”
Phys. Fluids
4
,
800
(
1961
).
You do not currently have access to this content.