A microjet arrangement comprising both penetration (or immersion) and convergence (jets oriented such that two jets of a pair interact with one another) is used to control a subsonic turbulent jet with a view to noise reduction. The acoustic effect of the so-called fluidevron system is comparable to chevrons and nonconverging microjets as far as the noise reduction is concerned. Detailed experimental measurements are performed for a main jet with Mach and Reynolds numbers of 0.3 and 310000, respectively. A direct numerical simulation study is performed for a model, plane mixing-layer problem using the immersed-boundary method, in order to help understand the topological features of the fluidevron–mixing-layer interaction. In terms of modifications produced in the flow, two relatively distinct regions are identified: the near-nozzle region, 0<(x/D)<1, where the dynamics are dominated by the fluidevron–main-jet interaction, and the region (x/D)>1, where the jet recovers many of the uncontrolled-jet flow characteristics, but with globally reduced turbulence levels and a longer potential core. The flow structure produced in the near-nozzle region is found to comprise an ejection of fluid from the main jet; the ejection process leads to very high fluctuation levels. This highly turbulent fluid, on being reassimilated by the mixing-layer downstream of the interaction point, has a spectacular local impact on turbulent kinetic energy production and on the entrainment: the former is reduced by 70%, and the latter boosted by 30% over the range 0.2<(x/D)<3. The impact of the flow control on the integral scales of the turbulence is assessed, as these are central to acoustic-analogy-based source models. A significant reduction is found in the radial integral scales, and these are then weighted by the local fluctuation energy in order to assess the impact of the control on the source mechanisms of the flow (considered in the context of Lighthill’s formulation of the problem). Considerable reductions are shown between the base line and controlled flows in terms of these energy-weighted space scales.

1.
V.
Arakeri
,
A.
Krothapalli
,
V.
Siddavaram
,
M. B.
Alkislar
, and
L. M.
Lourenco
, “
On the use of microjets to suppress turbulence in a Mach 0.9 axisymmetric jet
,”
J. Fluid Mech.
490
,
75
(
2003
).
2.
T.
Castelain
, “
Contrôle de jet par microjets impactants. Mesure de bruit rayonné et analyse aérodynamique
,” Ph.D. thesis,
Ecole centrale de Lyon
,
2006
.
3.
B.
Greska
,
A.
Krothapalli
, and
V.
Arakeri
, “
A further investigation into the effects of microjets on high speed jet noise
,”
9th AIAA/CEAS Aeroacoustics Conference, Hilton Head, SC
, AIAA Paper No. 2003-3128,
2003
.
4.
B.
Greska
,
A.
Krothapalli
,
N.
Burnside
, and
W.
Horne
, “
High speed jet noise reduction using microjets on a jet engine
,”
10th AIAA/CEAS Aeroacoustics Conference, Manchester, England
, AIAA Paper No. 2004-2969,
2004
.
5.
A.
Krothapalli
,
B.
Greska
, and
V.
Arakeri
, “
High-speed jet noise reduction using microjets
,”
8th AIAA/CEAS Aeroacoustics Conference, Breckenridge, CO
, AIAA Paper No. 2002-2450,
2002
.
6.
M.
Alkislar
,
A.
Krothapalli
,
L.
Lourenco
, and
G.
Butler
, “
The effect of streamwise vortices on the aeroacoustics of a Mach 0.9 axisymmetric jet
,”
J. Fluid Mech.
578
,
139
(
2007
).
7.
F.
Ricaud
, “
Etude de l’identification des sources acoustiques à partir du couplage de la pression en champ proche et de l’organisation instantanée de la zone de mélange jet
,” Ph.D. thesis,
Université de Poitiers
,
2003
.
8.
E.
Laurendeau
, “
Etude aéroacoustique d’une méthode de contrôle d’un jet subsonique par fluidevrons
,” Ph.D. thesis,
Université de Poitiers
,
2007
.
9.
A. B.
Cain
,
J. H.
Ferziger
, and
W. C.
Reynolds
, “
Discrete orthogonal function expansions for non-uniform grids using the fast Fourier transform
,”
J. Comput. Phys.
56
,
272
(
1984
).
10.
E. J.
Avital
,
N. D.
Sandham
, and
K. H.
Luo
, “
Stretched Cartesian grids for solution of the incompressible Navier-Stokes equations
,”
Int. J. Numer. Methods Fluids
33
,
897
(
2000
).
11.
J.
Kim
and
P.
Moin
, “
Application of a fractional-step method to incompressible Navier-Stokes equations
,”
J. Comput. Phys.
59
,
308
(
1985
).
12.
S.
Laizet
, “
Développement d’un code de calcul combinant des schémas de haute précision avec une méthode de frontière immergée pour la simulation des mouvements tourbillonnaires en aval d’un bord de fuite
,” Ph.D. thesis,
Université de Poitiers
,
2004
.
13.
E.
Lamballais
,
J.
Silvestrini
, and
S.
Laizet
, “
Direct numerical simulation of a separation bubble on a rounded finite-width leading edge
,”
Int. J. Heat Fluid Flow
29
,
612
(
2008
).
14.
S.
Laizet
and
E.
Lamballais
, “
Direct-numerical simulation of the splitting-plate downstream-shape influence upon a mixing layer
,”
C. R. Mec.
334
,
454
(
2006
).
15.
P.
Parnaudeau
,
J.
Carlier
,
D.
Heitz
, and
E.
Lamballais
, “
Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3 900
,”
Phys. Fluids
20
,
085101
(
2008
).
16.
P.
Parnaudeau
,
E.
Lamballais
,
D.
Heitz
, and
J. H.
Silvestrini
, “
Combination of the immersed boundary method with compact schemes for DNS of flows in complex geometry
,” in
Proceedings of the Fifth International ERCOFTAC Workshop on Direct and Large-Eddy Simulation
,
ERCOFTAC Series
, edited by
R.
Friedrich
,
B. J.
Geurts
, and
O.
Métais
(
Springer
,
New York
,
2004
), pp.
581
590
.
17.
E.
Laurendeau
,
P.
Jordan
,
J.
Delville
, and
J. -P.
Bonnet
, “
Source identification by nearfield-farfield pressure correlations in subsonic jets
,”
Int. J. Aeroacoust.
7
,
41
(
2008
).
18.
J.
Bridges
and
M. P.
Wernet
, “
Turbulence measurements of separate flow nozzles with mixing enhancement features
,”
8th AIAA/CEAS Aeroacoustics Conference, Breckenridge, CO
, AIAA Paper No. 2002-2484,
2002
.
19.
F. K.
Browand
and
T. R.
Troutt
, “
A note on spanwise structure in the two-dimensional mixing layer
,”
J. Fluid Mech.
93
,
325
(
1980
).
20.
P.
Comte
,
M.
Lesieur
, and
E.
Lamballais
, “
Large- and small-scale stirring of vorticity and a passive scalar in a 3-D temporal mixing layer
,”
Phys. Fluids A
4
,
2761
(
1992
).
21.
P.
Comte
,
J. H.
Silvestrini
, and
P.
Bégou
, “
Streamwise vortices in large-eddy simulations of mixing layers
,”
Eur. J. Mech. B/Fluids
17
,
615
(
1998
).
22.
S.
Lardeau
,
E.
Lamballais
, and
J. P.
Bonnet
. “
Direct numerical simulation of a jet controlled by fluid injection
,”
J. Turbul.
3
,
002
(
2002
).
23.
W.
Rodi
, “
A review of experimental data of uniform density free turbulent boundary layers
,” in
Studies in Convection: Theory, Measurements and Applications
, edited by
B. E.
Launder
(
Academic
,
New York
,
1975
), pp.
79
165
.
24.
P.
Jordan
and
Y.
Gervais
, “
Subsonic jet aeroacoustics: confronting experiment, modeling and simulation
,”
Exp. Fluids
44
,
1
(
2008
).
25.
R. H.
Kraichnan
, “
Pressure field within homogeneous anisotropic turbulence
,”
J. Acoust. Soc. Am.
28
,
64
(
1956
).
26.
M. E.
Goldstein
and
B.
Rosenbaum
, “
Effect of anisotropic turbulence on aerodynamic noise
,”
J. Acoust. Soc. Am.
54
,
630
(
1973
).
27.
P.
Jordan
and
Y.
Gervais
, “
Modelling self and shear noise mechanisms in inhomogeneous, anisotropic turbulence
,”
J. Sound Vib.
279
,
529
(
2005
).
You do not currently have access to this content.