We experimentally investigated molecular effects of the slip/no-slip boundary condition of Newtonian liquids in micro- and nanochannels as small as 350 nm. The slip was measurable for channels smaller than approximately 2μm. The amount of slip is found to be independent of the channel size, but is a function of the shear rate, the type of liquid (polar or nonpolar molecular structure), and the morphology of the solid surface (molecular-level smoothness).

1.
J. N.
Israelachvili
,
Intermolecular and Surface Forces
, 2nd ed. (
Academic
,
London, UK
,
1991
).
2.
J.
Koplik
and
J. R.
Banavar
, “
Continuum deductions from molecular hydrodynamics
,”
Annu. Rev. Fluid Mech.
27
,
257
(
1995
).
3.
C.
Neto
,
D. R.
Evans
,
E.
Bonaccurso
,
H. -J.
Butt
, and
V. S. J.
Craig
, “
Boundary slip in Newtonian liquids: A review of experimental studies
,”
Rep. Prog. Phys.
68
,
2859
(
2005
).
4.
E.
Lauga
,
M. P.
Brenner
, and
H.
Stone
, “
Microfluidics: The no-slip boundary condition
,”
Handbook of Experimental Fluid Dynamics
(
Springer
,
New York
,
2005
), Chap. 15.
5.
V. S. J.
Craig
,
C.
Neto
, and
D. R. M.
Williams
, “
Shear-dependent boundary slip in an aqueous Newtonian liquid
,”
Phys. Rev. Lett.
87
,
054504
(
2001
).
6.
Y.
Zhu
and
S.
Granick
, “
Limits of the hydrodynamic no-slip boundary condition
,”
Phys. Rev. Lett.
88
,
106102
(
2002
).
7.
C.
Cottin-Bizonne
,
A.
Steinberger
,
B.
Cross
,
O.
Raccurt
, and
E.
Charlaix
, “
Nanohydrodynamics: The intrinsic flow boundary condition on smooth surfaces
,”
Langmuir
24
,
1165
(
2008
).
8.
C.
Cottin-Bizonne
,
S.
Jurine
,
J.
Baudry
,
J.
Crassous
,
F.
Restagno
, and
E.
Charlaix
, “
Nanorheology: An investigation of the boundary condition at hydrophobic and hydrophilic interfaces
,”
Eur. Phys. J. E
9
,
47
(
2002
).
9.
R.
Pit
,
H.
Hervet
, and
L.
Léger
, “
Direct experimental evidence of slip in hexadecane: Solid interfaces
,”
Phys. Rev. Lett.
85
,
980
(
2000
).
10.
R.
Pit
,
H.
Hervet
, and
L.
Léger
, “
Friction and slip of a simple liquid at a solid surface
,”
Tribol. Lett.
7
,
147
(
1999
).
11.
P.
Joseph
and
P.
Tabeling
, “
Direct measurement of the apparent slip length
,”
Phys. Rev. E
71
,
035303
(
2005
).
12.
T.
Schmatko
,
H.
Hervet
, and
L.
Léger
, “
Friction and slip at simple fluid-solid interfaces: The roles of the molecular shape and the solid-liquid interaction
,”
Phys. Rev. Lett.
94
,
244501
(
2005
).
13.
P.
Huang
,
J. S.
Guasto
, and
K. S.
Breuer
, “
Direct measurement of slip velocities using three-dimensional total internal reflection velocimetry
,”
J. Fluid Mech.
566
,
447
(
2006
).
14.
T.
Schmatko
,
H.
Hervet
, and
L.
Léger
, “
Effect of nanometric-scale roughness on slip at the wall of simple fluids
,”
Langmuir
22
,
6843
(
2006
).
15.
L.
Zhu
,
D.
Tretheway
,
L.
Petzold
, and
C.
Meinhart
, “
Simulation of fluid slip at 3D hydrophobic microchannel walls by the lattice Boltzmann method
,”
J. Comput. Phys.
202
,
181
(
2005
).
16.
N. V.
Churaev
,
V.
Sobolev
, and
A.
Somov
, “
Slippage of liquids over lyophobic solid surface
,”
J. Colloid Interface Sci.
97
,
574
(
1984
).
17.
D. C.
Tretheway
and
C. D.
Meinhart
, “
Apparent fluid slip at hydrophobic microchannel walls
,”
Phys. Fluids
14
,
L9
(
2002
).
18.
C. -H.
Choi
,
K. J. A.
Westin
, and
K. S.
Breuer
, “
Apparent slip flows in hydrophilic and hydrophobic microchannels
,”
Phys. Fluids
15
,
2897
(
2003
).
19.
J.
Pfahler
,
J.
Harley
,
H.
Bau
, and
J. N.
Zemel
, “
Gas and liquid flow in small channels
,” in
Micromechanical Sensors, Actuators, and Systems
(
ASME
,
New York
,
1991
), Vol.
DSC-32
.
20.
U.
Ulmanella
, “
Molecular effects on the boundary condition in micro and nano fluidic channels
,” Ph.D. thesis,
University of California
,
2003
.
21.
J. W.
Benett
and
P.
Krulevitch
, “
A flexible packaging and interconnect scheme for microfluidic systems
,”
Proc. SPIE
3606
,
111
(
1999
).
22.
S. C.
Yang
and
L. B.
Fang
, “
Effect of surface roughness on slip flows in hydrophobic and hydrophilic microchannels by molecular dynamics simulation
,”
Mol. Simul.
31
,
971
(
2005
).
23.
N. V.
Priezjev
, “
Effect of surface roughness on rate-dependent slip in simple fluids
,”
Phys. Rev. E
75
,
051605
(
2007
).
24.
N. V.
Priezjev
and
S. M.
Troian
, “
Influence of periodic wall roughness on the slip behaviour at liquid/solid interfaces: Molecular-scale simulations versus continuum predictions
,”
J. Fluid Mech.
554
,
25
(
2006
).
25.
C. H.
Choi
,
U.
Ulmanella
,
J.
Kim
,
C. M.
Ho
, and
C. -J.
Kim
, “
Effective slip and friction reduction in nanograted superhydrophobic microchannels
,”
Phys. Fluids
18
,
087105
(
2006
).
26.
J.
Xu
and
Y.
Li
, “
Boundary conditions at the solid-liquid surface over the multiscale channel size from nanometer to micron
,”
Int. J. Heat Mass Transfer
50
,
2571
(
2007
).
You do not currently have access to this content.