A fundamental study has been performed to understand the effect of unsteady forcing on turbulence statistics in channel flow with rough walls using direct numerical simulation. Unsteady flows have been generated by applying an unsteady nonzero mean forcing in the form of time varying pressure gradient such that the amplitude of oscillations is between 19% and 26% of mean centerline velocity and covering a range of forcing frequencies. The analysis has revealed unsteady forcing, depending on the forcing frequency, results in enhanced roughness compared to steady channel flow. The rough-wall flow dynamics have been categorized into high-, intermediate-, and low-frequency regimes. In the regime of high-frequency forcing, unsteadiness alters the mean velocity and turbulence intensities only in the inner layer of the turbulent boundary layer. Further, the turbulence intensities are out of phase with each other and also with the external forcing. In the regime of intermediate-frequency forcing, mean velocity and turbulence intensities are altered beyond the inner layer. In the inner layer, the turbulence intensities are out of phase with each other. The Reynolds stress is in phase with the external forcing in the inner layer, but it is out of phase in the outer layer. In the regime of low-frequency forcing, the mean velocity and turbulence intensities are significantly altered throughout the turbulent boundary layer.

1.
J.
Jimenez
, “
Turbulent flow over rough walls
,”
Annu. Rev. Fluid Mech.
36
,
173
(
2004
).
2.
A. E.
Perry
,
K. L.
Lim
, and
S. M.
Henbest
, “
An experimental study of the turbulence structure in smooth- and rough-wall boundary layers
,”
J. Fluid Mech.
177
,
437
(
1987
).
3.
M. R.
Raupach
,
R. A.
Antonia
, and
S.
Rajagopalan
, “
Rough-wall turbulent boundary layers
,”
Appl. Mech. Rev.
44
,
1
(
1991
).
4.
P.
Krogstad
and
R. A.
Antonia
, “
Structure of turbulent boundary layers on smooth and rough walls
,”
J. Fluid Mech.
277
,
1
(
1994
).
5.
C.
Lee
, “
Large-eddy simulation of rough-wall turbulent boundar layers
,”
AIAA J.
40
,
2127
(
2002
).
6.
P.
Orlandi
,
S.
Leonardi
, and
R.
Tuzi
, “
Direct numerical simulation of turbulent channel flow with wal velocity disturbances
,”
Phys. Fluids
15
,
3587
(
2003
).
7.
P.
Orlandi
,
S.
Leonardi
, and
R. A.
Antonia
, “
Turbulent channel flow with either transverse or longitudinal roughness elements on one wall source
,”
J. Fluid Mech.
561
,
279
(
2006
).
8.
K.
Bhaganagar
,
J.
Kim
, and
G.
Coleman
, “
Effect of roughness on wall-bounded turbulence
,”
Flow, Turbul. Combust.
72
,
463
(
2004
).
9.
K.
Bhaganagar
,
G.
Coleman
, and
J.
Kim
, “
Effect of roughness on pressure statistics
,”
Phys. Fluids
19
,
028103
(
2007
).
10.
M.
Sen
,
K.
Bhagangar
, and
V.
Juttijudata
, “
Application of proper orthogonal decomposition (POD) to investigate a turbulent boundary layer in a channel with rough walls
,”
J. Turbul.
8
,
19
(
2007
).
11.
H.
Schlichting
,
Boundary Layer Theory
. 7th ed. (
McGraw-Hill
,
New York
,
1979
).
12.
D.
Ronneberger
and
C. D.
Ahrens
, “
Wall shear stress caused by signal amplitude perturbations of turbulent boundary-layer flow: An experimental investigation
,”
J. Fluid Mech.
83
,
433
(
1977
).
13.
R.
Mankbadi
and
J.
Liu
, “
Near wall response in turbulent shear flows subjected to imposed unsteadiness
,”
J. Fluid Mech.
238
,
55
(
1992
).
14.
S.
Tardu
,
G.
Binder
, and
R.
Blackwelder
, “
Turbulent channel flow with large-amplitude velocity oscillations
,”
J. Fluid Mech.
267
,
109
(
1994
).
15.
S.
Tardu
, “
Spectral characteristics of the near-wall turbulence in an unsteady channel flow
,”
Trans. ASME, J. Appl. Mech.
74
,
172
(
2007
).
16.
G.
Binder
and
J. L.
Kueny
, “
Measurements of the periodic velocity oscillations near the wall in unsteady turbulent channel flow
,” in
Unsteady Turbulent Shear Flows
, edited by
R.
Michel
and
J.
Cousteix
(
Springer-Verlag
,
New York
,
1981
), Vol.
100
, p.
108
.
17.
Z. X.
Mao
and
T. J.
Hanratty
, “
Studies of the wall shear stress in a turbulent pulsating pipe flow
,”
J. Fluid Mech.
170
,
545
(
1986
).
18.
Y. S.
Chang
and
D. M.
Hanes
, “
Suspended sediment and hydrodynamics above mildly sloped long wave ripples
,”
J. Geophys. Res.
109
,
C07022
, DOI: 10.1029/2003JC001900 (
2004
).
19.
J.
Fredsoe
,
K. H.
Andersen
, and
B. M.
Sumer
, “
Wave plus current over a rippled-covered bed
,”
Coastal Eng.
38
,
177
(
1999
).
20.
D.
Henn
and
R. I.
Sykes
, “
Large-eddy simulation of flow over wavy surfaces
,”
J. Fluid Mech.
383
,
75
(
1999
).
21.
R. J.
Calhoun
and
R. L.
Street
, “
Turbulent flow over a wavy surface: Neutral case
,”
J. Geophys. Res.
106
,
9277
, DOI: 10.1029/2000JC900133 (
2001
).
22.
Y. S.
Chang
and
A.
Scotti
, “
Modeling unsteady turbulent flows over ripples: Reynolds-averaged Navier–Stokes equations (RANS) versus large-eddy simulation (LES)
,
J. Geophys. Res.
109
,
C09012
, DOI: 10.1029/2003JC002208 (
2004
).
23.
B. C.
Barr
,
D. N.
Slinn
,
T.
Pierro
, and
K. B.
Winters
, “
Numerical simulation of turbulent, oscillatory flow over sand ripples
,”
J. Geophys. Res.
109
,
C09009
, DOI: 10.1029/2002JC001709 (
2004
).
24.
L. Y.
Zou
,
N. S.
Liu
, and
X. Y.
Lu
, “
An investigation of pulsating turbulent open channel flow by large eddy simulation
,”
Comput. Fluids
35
,
74
(
2006
).
25.
W.
Yue
,
C. -L.
Lin
, and
V. C.
Patel
, “
Coherent structures in open-channel flows over a fixed dune
,”
J. Fluids Eng.
127
,
858
(
2005
).
26.
A.
Scotti
and
U.
Piomelli
, “
Numerical simulation of pulsating turbulent channel flow
,”
Phys. Fluids
13
,
1367
(
2001
).
27.
P.
Scandura
,
G.
Vittori
, and
P.
Blondeaux
, “
Three-dimensional oscillatory flow over steep ripples
,”
J. Fluid Mech.
412
,
355
(
2000
).
28.
J. F.
Sleath
, “
Turbulent oscillatory flow over rough beds
,”
J. Fluid Mech.
182
,
369
(
1987
).
29.
R.
Macdonald
, “
Modelling of mean velocity in the urban canopy layer
,”
Boundary-Layer Meteorol.
97
,
25
(
2000
).
30.
H. M.
Nepf
and
E. R.
Vivoni
, “
Flow structure in depth-limited vegetated flow
,”
J. Geophys. Res.
105
,
28547
, DOI: 10.1029/2000JC900145 (
2000
).
31.
J.
Finnigan
, “
Turbulence in plant canopies
,”
Annu. Rev. Fluid Mech.
32
,
519
(
2000
).
32.
R. J.
Lowe
,
J.
Koseff
, and
S.
Monismith
, “
Oscillatory flow through submerged canopies: 1. Velocity structure
,”
J. Geophys. Res., [Oceans]
110
,
C10016
, DOI: 10.1029/2004JC002788 (
2005
).
33.
P. J.
Schmid
and
D. S.
Henningson
,
Stability and Transition in Shear Flows
,
Springer Series in Applied Mathematical Sciences
Vol.
142
(
Springer
,
New York
,
2001
).
34.
K.
Bhaganagar
,
D.
Rempfer
, and
J. L.
Lumley
, “
Direct numerical simulation of spatial transition to turbulence using fourth-order vertical velocity second-order vertical vorticity formulation
,”
J. Comput. Phys.
180
,
200
(
2002
).
35.
C.
Canuto
,
M. Y.
Hussaini
,
A.
Quarteroni
, and
T. A.
Zang
.
Spectral Methods in Fluid Dynamics
,
Springer Series in Computational Science and Engineering
(
Springer-Verlag
,
New York
,
1988
).
36.
S. K.
Lele
, “
Compact finite difference schemes with spectral like resolution
,”
J. Comput. Phys.
103
,
16
(
1992
).
37.
J. H.
Williamson
, “
Low-storage Runge–Kutta schemes
,”
J. Comput. Phys.
35
,
48
(
1980
).
38.
M. H.
Carpenter
and
C. A.
Kennedy
, “
A fourth order 2N-storage Runge–Kutta scheme
,”
NASA
Report No. TM-109112,
1994
.
39.
V.
De Angelis
,
P.
Lombardi
, and
S.
Banerjee
, “
Direct numerical simulation of turbulent flow over a wavy wall
,”
Phys. Fluids
9
,
2429
(
1997
).
40.
P.
Cherukat
,
Y.
Na
, and
T. J.
Hanratty
, “
Direct numerical simulation of a fully developed turbulent flow over a wavy wall
,”
Theor. Comput. Fluid Dyn.
11
,
109
(
1998
).
41.
Y.
Miyake
,
K.
Tsujimoto
, and
N.
Nagai
, “
Numerical simulation of channel flow with a rib-roughened wall
,”
J. Turbul.
3
,
1
(
2002
).
42.
P.
Orlandi
and
S.
Leanardi
, “
DNS of turbulent channel flows with two- and three-dimensional roughness
,”
J. Turbul.
7
,
1
(
2006
).
43.
J. M.
Yusof
, “
Combined immersed-boundary/B-spline methods for simulations of flow in complex geometries
,”
CTR Annual Research Briefs
(
NASA Ames, Stanford University
,
Stanford, CA
,
1997
).
44.
G.
Brereton
and
W.
Reynolds
, “
Dynamic response of boundary-layer turbulence to oscillatory shear
,”
Phys. Fluids A
3
,
178
(
1991
).
45.
W. D.
Grant
and
O. S.
Madsen
, “
Combined wave and current interaction with a rough bottom
,”
J. Geophys. Res.
84
,
1797
(
1979
).
46.
H.
Cheng
and
I. P.
Castro
, “
Near wall flow over urban-like roughness
,”
Boundary-Layer Meteorol.
104
,
229
(
2002
).
47.
P. R.
Bandyopadhyay
, “
Resonant flow in small cavities submerged in a boundary layer
,”
Proc. R. Soc. London, Ser. A
420
,
219
(
1988
).
48.
I. G.
Jonsson
, “
A new approach to oscillatory rough turbulent boundary layers
,”
Ocean Eng.
7
,
109
(
1980
).
You do not currently have access to this content.