Direct numerical simulations of two‐dimensional high Rayleigh (Ra) number, base‐heated thermal convection in large aspect‐ratio boxes are presented for infinite Prandtl number fluids, as applied to the Earth’s mantle. A transition is characterized in the flow structures in the neighborhood of Ra between 107 and 108. These high Ra flows consist of large‐scale cells with strong intermittent, boundary‐layer instabilities. For Ra exceeding 107 it is found that the heat‐transfer mechanism changes from one characterized by mushroom‐like plumes to one consisting of disconnected ascending instabilities, which do not carry with them all the thermal anomaly from the bottom boundary layer. Plume–plume collisions become much more prominent in high Ra situations and have a tendency of generating a pulse‐like behavior in the fixed plume. This type of instability represents a distinct mode of heat transfer in the hard turbulent regime. Predictions of this model can be used to address certain issues concerning the mode of time‐dependent convection in the Earth’s mantle.

1.
M.
Sano
,
X. Z.
Wu
, and
A.
Lichaber
,
Phys. Rev. A
40
,
6421
(
1989
).
2.
B.
Castaing
,
G.
Gunaratne
,
F.
Heslot
,
L.
Kadanoff
,
A.
Libchaber
,
S.
Thomae
,
X. Z.
Wu
,
S.
Zaleski
, and
G.
Zanetti
,
J. Fluid Mech.
204
,
1
(
1989
).
3.
L.
Sirovich
,
S.
Balachandar
, and
M. R.
Maxey
,
Phys. Fluids A
1
,
1911
(
1989
).
4.
P.
Machetel
and
D. A.
Yuen
,
Geophys. Res. Lett.
13
,
1470
(
1986
).
5.
U. R.
Christensen
,
Geophys. Res. Lett.
14
,
220
(
1987
).
6.
U.
Hansen
and
A.
Ebel
,
Geophys. J.
94
,
181
(
1988
).
7.
R.
Krishnamurti
and
L. N.
Howard
,
Proc. Natl. Acad. Sci. USA
78
,
1981
(
1981
).
8.
H. J. Melosh, in The Origin of the Earth, edited by J. Jones and H. Newsom (Oxford U.P., New York, 1990).
9.
I.
Goldhirsch
,
R. B.
Pelz
, and
S. A.
Orszag
,
J. Fluid Mech.
199
,
1
(
1989
).
10.
T. H.
Solomon
and
J. P.
Gollub
,
Phys. Rev. Lett.
64
,
2382
(
1990
).
11.
P. L.
Olson
and
G. M.
Corcos
,
Geophys. J. R. Astron. Soc.
62
,
195
(
1980
).
12.
B.
Blankenbach
,
F.
Busse
,
W.
Christensen
,
L.
Cserepes
,
D.
Gunkel
,
U.
Hansen
,
H.
Harder
,
G.
Jarvis
,
M.
Koch
,
G.
Marquart
,
D.
Moore
,
P.
Olson
,
H.
Schmeling
, and
T.
Schnaubelt
,
Geophys. Int.
98
,
23
(
1989
).
13.
T. J. R. Hughes, The Finite Element Method (Prentice–Hall, Englewood Cliffs, NJ, 1987).
14.
K.‐H.
Winkler
,
J. W.
Chalmers
,
S. W.
Hodson
,
P. R.
Woodward
, and
N. J.
Zabusky
,
Phys. Today
40
,
28
(
1987
).
15.
U. R.
Christensen
and
D. A.
Yuen
,
Geophys. Res. Lett.
15
,
577
(
1988
).
16.
U.
Hansen
and
A.
Ebel
,
Phys. Earth Planet. Int.
36
,
374
(
1984
).
17.
L. N. Howard in Proceedings of the 11th International Congress of Applied Mechanics, Munich, 1966, edited by H. Dörtler (Springer, Berlin, 1966), pp. 1109–1115.
18.
S. Balachandar (private communication, 1990).
19.
J. N.
Skilbeck
and
J. A.
Whitehead
,
Nature
272
,
499
(
1978
).
20.
M.
Gurnis
,
Nature
332
,
695
(
1988
).
21.
A. V. Malevsky and D. A. Yuen, submitted to Phys. Fluids A (1990).
22.
A. P.
Vincent
and
D. A.
Yuen
,
Phys. Rev. A
38
,
328
(
1988
).
23.
U. R.
Christensen
,
Geophys. Astrophys. Fluid Dyn.
46
,
93
(
1989
).
24.
S.
Honda
and
D. A.
Yuen
,
Earth Planet. Sci. Lett.
99
,
349
(
1990
).
25.
A. M.
Dziewonski
and
J. H.
Woodhouse
,
Science
236
,
37
(
1987
).
26.
M. A.
Richards
and
R. W.
Griffiths
,
Geophys. J.
94
,
367
(
1988
).
This content is only available via PDF.
You do not currently have access to this content.