The three‐dimensional (3‐D) instability of a two‐dimensional (2‐D) flow with elliptical streamlines has been proposed as a generic mechanism for the breakdown of many 2‐D flows. A physical interpretation for the mechanism is presented together with an analytical treatment of the problem. It is shown that the stability of an elliptical flow is governed by an Ince equation. An analytical representation for a localized solution is given and establishes a direct link with previous computations and experiments.

1.
S. A.
Orszag
and
A.
Patera
,
J. Fluid Mech.
128
,
347
(
1983
).
2.
T.
Herbert
,
Phys. Fluids
26
,
871
(
1983
).
3.
R. T.
Pierrehumbert
and
S. E.
Widnall
,
J. Fluid Mech.
114
,
59
(
1982
).
4.
B.
Bayly
,
S. A.
Orszag
, and
T.
Herbert
,
Annu. Rev. Fluid Mech.
20
,
359
(
1988
).
5.
R. T.
Pierrehumbert
,
Phys. Rev. Lett.
57
,
2157
(
1986
).
6.
B.
Bayly
,
Phys. Rev. Lett.
57
,
2160
(
1986
).
7.
M. J.
Landman
and
P. G.
Saffman
,
Phys. Fluids
30
,
2339
(
1987
).
8.
W. V. R. Malkus, Geophys. Astrophys. Fluid Dyn. (in press).
9.
W. Magnus and S. Winkler, Hill’s Equation (Academic, New York, 1966).
10.
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965).
11.
E.
Cambi
,
Proc. R. Soc. Edinburgh A
63
,
27
(
1949
).
12.
B. B. Hu, Fellow’s Report No. WHOIGFD, 1987.
13.
H. Greenspan, The Theory of Rotating Fluids (Cambridge U.P., Cambridge, 1968).
14.
Y. E. B.
Gledzer
,
F. V.
Dolzhanskiy
,
A. M.
Obukhov
, and
V. M.
Ponomarev
,
Izv. Atmos. Ocean. Phys.
11
, (
10
),
981
(
1975
).
15.
V. A. Vladimirov and V. Tarasov, in Laminar‐Turbulent Transition, Proceedings of the IUTAM Symposium, Novosibirisk, 1984, edited by V. V. Kozlov (Springer, Berlin, 1985), pp. 717–722.
16.
F. Waleffe, Ph.D. thesis, Massachusetts Institute of Technology, 1989.
17.
F. Waleffe, Fellow’s Report No. WHOI GFD, 1988.
This content is only available via PDF.
You do not currently have access to this content.