Previously, expressions governing the temporal evolution of linear perturbations to an isolated, planar, two-dimensional shock front in an inviscid fluid medium with an arbitrary equation of state were derived using a methodology based on Riemann invariants and Laplace transforms [J. W. Bates, Phys. Rev. E69, 056313 (2004)]. An overlooked yet immediate consequence of this theory is that the stability limits of shocks can be readily determined from an inspection of the poles of the transformed ripple amplitude. Here, it is shown that two classes of instabilities exist for isolated planar shock waves: one in which perturbations grow exponentially in time, and the other in which disturbances are stationary. These results agree with those derived by D’yakov and Kontorovich (by more arduous and somewhat ambiguous means), and serve as an important addendum to our earlier analysis.

1.
See, for example,
N.
Ohnishi
,
K.
Kotake
, and
S.
Yamada
, “
Numerical analysis of standing accretion shock instability with neutrino heating in supernova cores
,”
Astrophys. J.
641
,
1018
(
2006
).
2.
See, for example,
R.
Ishizaki
and
K.
Nishihara
, “
Propagation of a rippled shock wave driven by nonuniform laser ablation
,”
Phys. Rev. Lett.
78
,
1920
(
1997
).
3.
N. C.
Freeman
, “
On the stability of plane shock waves
,”
J. Fluid Mech.
2
,
397
(
1957
).
4.
W. K.
van Moorhem
and
A. R.
George
, “
On the stability of plane shocks
,”
J. Fluid Mech.
68
,
97
(
1975
).
5.
G.
Fraley
, “
Rayleigh-Taylor stability for a normal shock wave-density discontinuity interaction
,”
Phys. Fluids
29
,
376
(
1986
).
6.
See National Technical Information Service Document No. PB2004-100597 (
A. E.
Roberts
, “
Stability of a steady plane shock
,” Los Alamos Scientific Laboratory Report No. LA-299,
1945
). Copies may be ordered from National Technical Information Service, Springfield, VA 22161.
7.
See National Technical Information Service Document PB2004-100598 (
H. A.
Bethe
, “
The theory of shock waves for an arbitrary equation of state
,” Office of Scientific Research and Development Report No. 545,
1942
). Copies may be ordered from National Technical Information Service, Springfield, VA 22161.
8.
C. S.
Gardner
, “
Comment on ‘Stability of step shocks'
,”
Phys. Fluids
6
,
1366
(
1963
).
9.
P. A.
Thompson
and
Y. G.
Kim
, “
Direct observation of shock splitting in a vapor-liquid system
,”
Phys. Fluids
26
,
3211
(
1983
).
10.
R.
Menikoff
and
B. J.
Plohr
, “
The Riemann problem for fluid flow of real materials
,”
Rev. Mod. Phys.
61
,
75
(
1989
).
11.
S. P.
D’yakov
, “
On the stability of shock waves
,”
Zh. Eksp. Teor. Fiz.
27
,
288
(
1954
).
12.
G. R.
Folwes
and
G. W.
Swan
, “
Stability of plane shock waves
,”
Phys. Rev. Lett.
30
,
1023
(
1973
).
13.
G. W.
Swan
and
G. R.
Fowles
, “
Shock wave stability
,”
Phys. Fluids
18
,
28
(
1975
).
14.
J. J.
Erpenbeck
, “
Stability of step shocks
,”
Phys. Fluids
5
,
1181
(
1962
).
15.
G. E.
Duvall
, “
Phase transitions under shock-wave loading
,”
Rev. Mod. Phys.
49
,
523
(
1977
).
16.
V. M.
Kontorovich
, “
Concerning the stability of shock waves
,”
Sov. Phys. JETP
6
,
1179
(
1957
).
17.
G.
Joulin
and
P.
Vidal
, in
Hydrodynamics and Nonlinear Instabilities
(
Cambridge University
,
Cambridge
,
1998
), p.
614
.
18.
J. W.
Bates
and
D. C.
Montgomery
, “
The D’yakov-Kontorovich instability of shock waves in real gases
,”
Phys. Rev. Lett.
84
,
1180
(
2000
).
19.
L. D.
Landau
and
E. M.
Lifshitz
,
Fluid Mechanics
, 2nd ed. (
Pergamon
,
Oxford
,
1987
).
20.
J. G.
Wouchuk
and
J. L.
Cavada
, “
Spontaneous acoustic emission of a corrugated shock wave in the presence of a reflecting surface
,”
Phys. Rev. E
70
,
046303
(
2004
).
21.
G. R.
Fowles
, “
Stimulated and spontaneous emission of acoustic waves from shock fronts
,”
Phys. Fluids
24
,
220
(
1981
).
22.
I. I.
Glass
and
W. S.
Wu
, “
Effects of hydrogen impurities on shock structure and stability in ionizing monatomic gases. Part I. Argon
,”
J. Fluid Mech.
84
,
55
(
1978
).
23.
M.
Mond
,
I. M.
Rutkevich
, and
E.
Toffin
, “
Stability of ionizing shock waves in monatomic gases
,”
Phys. Rev. E
56
,
5968
(
1997
).
24.
R. W.
Griffiths
,
R. J.
Sandeman
, and
H. G.
Hornung
, “
The stability of shock waves in ionizing and dissociating gases
,”
J. Phys. D
9
,
1681
(
1976
).
25.
M.
Mond
and
I.
Rutkevich
, “
Spontaneous acoustic emission from strong shocks in diatomic gases
,”
Phys. Fluids
14
,
1468
(
2002
).
26.
I. M.
Rutkevich
,
E.
Zaretsky
, and
M.
Mond
, “
Thermodynamic properties and stability of shock waves in metals
,”
J. Appl. Phys.
81
,
7228
(
1997
).
27.
J. W.
Bates
, “
Initial-value-problem solution for isolated rippled shock fronts in arbitrary fluid media
,”
Phys. Rev. E
69
,
056313
(
2004
).
28.
W. R.
LePage
,
Complex Variables and the Laplace Transform for Engineers
(
Dover
,
New York
,
1961
).
29.
F. B.
Hildebrand
,
Advanced Calculus for Applications
(
Prentice-Hall
,
Englewood Cliffs, NJ
,
1976
).
30.
G.
Franklin
,
J. D.
Powell
, and
A.
Emami-Naeini
,
Feedback Control of Dynamic Systems
, 4th ed. (
Prentice-Hall
,
Englewood Cliffs, NJ
,
2002
).
31.
R. M.
Zaidel’
, “
Shock wave from a slightly curved piston
,”
J. Appl. Math. Mech.
24
,
316
(
1958
).
32.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes
, 2nd ed. (
Cambridge University
,
Cambridge
,
1992
).
33.
E. I.
Zababakhin
and
V. A.
Simonenko
, “
Discontinuities of shock adiabats and the non-uniqueness of some shock compressions
,”
Sov. Phys. JETP
25
,
876
(
1967
).
You do not currently have access to this content.