High-amplitude pressure oscillations in solid propellant rocket motor combustion chambers display nonlinear effects including: (1) limit cycle behavior in which the fluctuations may dwell for a considerable period of time near their peak amplitude, (2) elevated mean chamber pressure (DC shift), and (3) a triggering amplitude above which pulsing will cause an apparently stable system to transition to violent oscillations. Along with the obvious undesirable vibrations, these features constitute the most damaging impact of combustion instability on system reliability and structural integrity. The physical mechanisms behind these phenomena and their relationship to motor geometry and physical parameters must, therefore, be fully understood if instability is to be avoided in the design process, or if effective corrective measures must be devised during system development. Predictive algorithms now in use have limited ability to characterize the actual time evolution of the oscillations, and they do not supply the motor designer with information regarding peak amplitudes or the associated critical triggering amplitudes. A pivotal missing element is the ability to predict the mean pressure shift; clearly, the designer requires information regarding the maximum chamber pressure that might be experienced during motor operation. In this paper, a comprehensive nonlinear combustion instability model is described that supplies vital information. The central role played by steep-fronted waves is emphasized. The resulting algorithm provides both detailed physical models of nonlinear instability phenomena and the critically needed predictive capability. In particular, the origin of the DC shift is revealed.

1.
S. I.
Cheng
, “
High frequency combustion instability in solid propellant rockets: Part I
,”
Jet Propul.
24
,
27
(
1954
);
S. I.
Cheng
, “
High frequency combustion instability in solid propellant rockets: Part II
,”
Jet Propul.
24
,
102
(
1954
).
2.
F. E. C.
Culick
, “
Acoustic oscillations in solid propellant rocket chambers
,”
Acta Astron.
12
,
113
(
1966
).
3.
F. E. C.
Culick
, “
The stability of one-dimensional motions in a rocket motor
,”
Combust. Sci. Technol.
7
,
165
(
1973
).
4.
F. E. C.
Culick
, “
Stability of three-dimensional motions in a rocket motor
,”
Combust. Sci. Technol.
10
,
109
(
1974
).
5.
F. E. C.
Culick
, “
Nonlinear behavior acoustic waves in combustion chambers, parts 1 and 2
,”
Acta Astronaut.
3
,
714
(
1976
).
6.
F. E. C.
Culick
and
V.
Yang
, “
Prediction of the stability of unsteady motions in solid propellant rocket motors
,” in
Nonsteady Burning and Combustion Stability of Solid Propellants
, edited by
L.
De Luca
,
E. W.
Price
, and
M.
Summerfield
,
AIAA Progress in Astronautics and Aeronautics
Vol.
143
(
AIAA
,
Washington, DC
,
1992
), pp.
719
779
.
7.
R. W.
Hart
and
F. T.
McClure
, “
Combustion instability: Acoustic interaction with a burning propellant surface
,”
J. Chem. Phys.
10
,
1501
(
1959
).
8.
R. W.
Hart
and
F. T.
McClure
, “
Theory of acoustic instability in solid propellant rocket combustion
,”
Tenth Symposium (International) on Combustion
,
University of Cambridge
,
Cambridge, England
, 17–21 August,
1047
1066
(
1964
).
9.
F. E. C.
Culick
, “
Stability of longitudinal oscillations with pressure and velocity coupling in a solid propellant rocket
,”
Combust. Sci. Technol.
2
,
179
(
1970
).
10.
F. E. C.
Culick
, “
Combustion instabilities in propulsion systems
,” Combustion Instabilities Driven by Thermo-Chemical Acoustic Sources, American Society of Mechanical Engineers, NCA 4, HTD 128, New York,
33
(
1989
).
11.
F. E. C.
Culick
, “
Combustion instabilities in propulsion systems
,” in
Unsteady Combustion
(
Kluwer Academic
,
Dordrecht
,
1996
), pp.
173
241
.
12.
E. W.
Price
and
J. W.
Sofferis
, “
Combustion instability in solid propellant rocket motors
,”
Jet Propul.
28
,
190
(
1958
).
13.
V.
Yang
,
J.
Wicker
, and
M. W.
Yoon
, “
Acoustic waves in combustion chambers
,” in
Liquid Rocket Engine Combustion Instability
, edited by
V.
Yang
and
W. E.
Anderson
,
AIAA Progress in Astronautics and Aeronautics
Vol.
169
(
AIAA
,
Reston, VA
,
1995
), pp.
357
376
.
14.
W. G.
Brownlee
, “
Nonlinear axial combustion instability in solid propellant motors
,”
AIAA J.
2
,
275
(
1964
).
15.
W. G.
Brownlee
, “
An experimental investigation of unstable combustion in solid propellant rocket motors
,” Ph.D. dissertation,
California Institute of Technology
,
1959
.
16.
L.
Green
, Jr.
, “
Observations on the irregular reaction of solid propellant charges
,”
Jet Propul.
26
,
655
(
1956
).
17.
F. E. C.
Culick
, “
Non-linear growth and limiting amplitude of acoustic oscillations in combustion chambers
,”
Combust. Sci. Technol.
3
,
1
(
1971
).
18.
F. E. C.
Culick
, “
Combustion instabilities: mating dance of chemical, combustion, and combustor dynamics
,” AIAA Paper 2000-3178, Huntsville, AL,
2000
. 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit,
16–19 July
.
19.
G. A.
Flandro
, “
Approximate analysis of nonlinear instability with shock waves
,” AIAA Paper 82-1220, Cleveland, OH,
1982
. 18th AIAA/SAE/ASME Joint Propulsion Conference,
21–23 June
.
20.
G. A.
Flandro
, “
Energy balance analysis of nonlinear combustion instability
,”
J. Propul. Power
1
,
210
(
1985
).
21.
G. A.
Flandro
, “
Analysis of nonlinear combustion instability
,”
SIAM Minisymposium
,
York, UK
,
1998
.
22.
V.
Yang
,
S. I.
Kim
, and
F. E. C.
Culick
, “
Triggering of longitudinal pressure oscillations in combustion chambers, I: Nonlinear gasdynamics
,”
Combust. Sci. Technol.
72
,
183
(
1990
).
23.
F. E. C.
Culick
, “
Some recent results for nonlinear acoustics in combustion chambers
,”
AIAA J.
32
,
146
(
1994
).
24.
F. E. C.
Culick
,
V. S.
Burnley
, and
G.
Swenson
, “
Pulsed instabilities in solid-propellant rockets
,”
J. Propul. Power
11
,
657
(
1995
).
25.
J. N.
Levine
and
J. D.
Baum
, “
A numerical study of nonlinear instability phenomena in solid rocket motors
,”
AIAA J.
21
,
557
(
1983
).
26.
W. G.
Brownlee
, “
Shock propagation is solid-propellant rocket combustors
,”
AIAA J.
4
,
1132
(
1966
).
27.
S.
Malhotra
and
G. A.
Flandro
, “
On the origin of the DC shift
,” AIAA Paper 97-3249, Seattle, WA,
1997
. 33rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 6–9 July.
28.
E. W.
Price
, “
Experimental observations of combustion instability
,” in
Fundamentals of Solid-Propellant Combustion
, edited by
K.
Kuo
and
M.
Summerfield
,
AIAA Progress in Astronautics and Aeronautics
Vol.
90
(
AIAA
,
New York
,
1984
), pp.
733
790
.
29.
G. A.
Flandro
,
J.
Majdalani
, and
J. C.
French
, “
Incorporation of nonlinear capabilities in the standard stability prediction program
,” AIAA Paper 2004-4182, Fort Lauderdale, FL,
2004
. 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 11–14 July.
30.
G. A.
Flandro
,
J.
Majdalani
, and
J. D.
Sims
, “
Nonlinear longitudinal mode instability in liquid propellant rocket engine preburners
,” AIAA Paper 2004-4162, Fort Lauderdale, Florida,
2004
. 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 11–14 July.
31.
G. A.
Flandro
,
J.
Majdalani
, and
J. D.
Sims
, “
On nonlinear combustion instability in liquid propellant rocket engines
,” AIAA Paper 2004-3516, Fort Lauderdale, FL,
2004
. 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 11–14 July.
32.
F. S.
Blomshield
,
J. E.
Crump
,
H. B.
Mathes
,
R. A.
Stalnaker
, and
M. W.
Beckstead
, “
Stability testing of full-scale tactical motors
,”
J. Propul. Power
13
,
349
(
1997
).
33.
F. S.
Blomshield
,
H. B.
Mathes
,
J. E.
Crump
,
C. A.
Beiter
, and
M. W.
Beckstead
, “
Nonlinear stability testing of full-scale tactical motors
,”
J. Propul. Power
13
,
356
(
1997
).
34.
R. C.
Jensen
and
M. W.
Beckstead
, “
Limiting amplitude analysis
,” Technical Report., Hercules Incorporated, Magna, Utah,
1973
.
35.
R. A.
Saenger
and
G. E.
Hudson
, “
Periodic shock waves in resonating gas columns
,”
J. Acoust. Soc. Am.
32
,
961
(
1960
).
36.
W. G.
Brownlee
and
F. E.
Marble
, “
An experimental investigation of unstable combustion in solid propellant rocket motors
,” in
ARS Progress in Astronautics and Rocketry: Solid Propellant Research
, edited by
M.
Summerfield
(
Academic
,
New York
,
1960
), Vol.
1
, pp.
455
494
.
37.
F. S.
Blomshield
, “
Stability testing and pulsing of full scale tactical motors, parts I and II
,” Naval Air Warfare Center, Technical Report, NAWCWPNS TP 8060,
February 1996
.
38.
J. G.
Sotter
,
J. W.
Woodward
, and
R. M.
Clayton
, “
Injector response to strong high-frequency pressure oscillations
,”
J. Spacecr. Rockets
6
,
504
(
1969
).
39.
J. G.
Sotter
and
R. M.
Clayton
, “
Monitoring the combustion process in large engines
,”
J. Spacecr. Rockets
4
,
702
(
1967
).
40.
R. M.
Clayton
,
R. S.
Rogero
, and
J. G.
Sotter
, “
An experimental description of destructive liquid rocket resonant combustion
,”
AIAA J.
6
,
1252
(
1968
).
41.
G. A.
Flandro
, “
Nonlinear unsteady solid propellant flame zone analysis
,” AIAA Paper 98-3700, Cleveland, OH,
1998
. 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 13–15 July.
42.
G. A.
Flandro
, “
Effects of vorticity on rocket combustion stability
,”
J. Propul. Power
11
,
607
(
1995
).
43.
G. A.
Flandro
and
J.
Majdalani
, “
Aeroacoustic instability in rockets
,”
AIAA J.
41
,
485
(
2003
).
44.
F. E. C.
Culick
and
V.
Yang
, “
Overview of combustion instabilities in liquid propellant rocket engines
,” in
Liquid Rocket Engine Combustion Instability
, edited by
V.
Yang
and
W. E.
Anderson
,
AIAA Progress in Astronautics and Aeronautics
Vol.
169
(
AIAA
,
Reston, VA
,
1995
), pp.
1
37
.
45.
F. E. C.
Culick
, “
A note on Rayleigh’s criterion
,”
Combust. Sci. Technol.
56
,
159
(
1987
).
46.
F. E. C.
Culick
, “
High frequency oscillations in liquid rockets
,”
AIAA J.
1
,
1097
(
1963
).
47.
G. A.
Flandro
, “
On flow turning
,” AIAA Paper 95-2530, San Diego, CA,
1995
. 31st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 10–12 July.
48.
G. A.
Flandro
,
W.
Cai
, and
V.
Yang
, “
Turbulent transport in rocket motor unsteady flowfield
,” in
Solid Propellant Chemistry, Combustion, and Motor Interior Ballistics
, edited by
V.
Yang
,
T. B.
Brill
, and
W.-Z.
Ren
,
AIAA Progress in Astronautics and Aeronautics
Vol.
185
(
AIAA
,
Washington, DC
,
2000
), pp.
837
858
.
49.
J.
Majdalani
,
G. A.
Flandro
, and
T. S.
Roh
, “
Convergence of two flowfield models predicting a destabilizing agent in rocket combustion
,”
J. Propul. Power
16
,
492
(
2000
).
50.
J.
Majdalani
and
W. K.
Van Moorhem
, “
Improved time-dependent flowfield solution for solid rocket motors
,”
AIAA J.
36
,
241
(
1998
).
51.
J.
Majdalani
, “
The boundary layer structure in cylindrical rocket motors
,”
AIAA J.
37
,
505
(
1999
).
52.
J.
Majdalani
, “
Vorticity dynamics in isobarically closed porous channels. Part I: Standard perturbations
,”
J. Propul. Power
17
,
355
(
2001
).
53.
J.
Majdalani
and
T. S.
Roh
, “
Vorticity dynamics in isobarically closed porous channels. Part II: Space-reductive perturbations
,”
J. Propul. Power
17
,
363
(
2001
).
54.
J.
Majdalani
and
T. S.
Roh
, “
The oscillatory channel flow with large wall injection
,”
Proc. R. Soc. London, Ser. A
456
,
1625
(
2000
).
55.
J.
Majdalani
,
G. A.
Flandro
, and
S. R.
Fischbach
, “
Some rotational corrections to the acoustic energy equation in injection-driven enclosures
,”
Phys. Fluids
17
,
074102
(
2005
).
56.
F.
Vuillot
and
G.
Avalon
, “
Acoustic boundary layer in large solid propellant rocket motors using Navier-Stokes equations
,”
J. Propul. Power
7
,
231
(
1991
).
57.
T. S.
Roh
,
I. S.
Tseng
, and
V.
Yang
, “
Effects of acoustic oscillations on flame dynamics of homogeneous propellants in rocket motors
,”
J. Propul. Power
11
,
640
(
1995
).
58.
T. S.
Roh
and
V.
Yang
, “
Transient combustion response of solid propellant to acoustic disturbance in rocket motors
,” AIAA Paper 95-0602, Reno, NV,
1995
. 33rd Aerospace Sciences Meeting and Exhibit, 9–12 January.
59.
F.
Vuillot
, “
Numerical computation of acoustic boundary layers in large solid propellant space booster
,” AIAA Paper 91-0206, Reno, NV,
1991
. 29th Aerospace Sciences Meeting and Exhibit, 7–10 January.
60.
J. D.
Baum
,
J. N.
Levine
, and
R. L.
Lovine
, “
Pulsed instabilities in rocket motors: A comparison between predictions and experiments
,”
J. Propul. Power
4
,
308
(
1988
).
61.
J. D.
Baum
, “
Investigation of flow turning phenomenon; effects of frequency and blowing rate
,” AIAA Paper 89-0297, Reno, NV,
1989
. 27th Aerospace Sciences Meeting and Exhibit, 9–12 January.
62.
R. L.
Glick
and
J. P.
Renie
, “
On the nonsteady flowfield in solid rocket motors
,” AIAA Paper 84-1475, Cincinnati, OH,
1984
. 20th AIAA/SAE/ASME Joint Propulsion Conference, 11–13 June.
63.
R. S.
Brown
,
A. M.
Blackner
,
P. G.
Willoughby
, and
R.
Dunlap
, “
Coupling between acoustic velocity oscillations and solid propellant combustion
,”
J. Propul. Power
2
,
428
(
1986
).
64.
C. W.
Shaeffer
and
R. S.
Brown
, “
Oscillatory internal flow field studies
,” United Technologies, AFOSR Contract Report F04620-90-C-0032, San Jose, CA,
August 1990
.
65.
R. H.
Cantrell
and
R. W.
Hart
, “
Interaction between sound and flow in acoustic cavities: mass, momentum, and energy considerations
,”
J. Acoust. Soc. Am.
36
,
697
(
1964
).
66.
W.
Chester
, “
Resonant oscillations in closed tubes
,”
J. Fluid Mech.
18
,
44
(
1964
).
67.
W. A.
Sirignano
and
L.
Crocco
, “
A shock wave model of unstable rocket combustion
,”
AIAA J.
2
,
7
(
1964
).
68.
G.
Kirchoff
,
Vorlesungen Über Mathematische Physik: Mechanik
, 2nd ed. (
Teubner
,
Leibzig
,
1877
).
69.
W. K.
Van Moorhem
, “
Flow turning in solid-propellant rocket combustion stability analyses
,”
AIAA J.
20
,
1420
(
1982
).
70.
S.
Malhotra
, “
On combustion instability in solid rocket motors
,” Ph.D. dissertation,
California Institute of Technology
,
2004
.
71.
W. K.
Van Moorhem
, “
An investigation of the origin of the flow turning effect in combustion instability
,”
17th JANNAF Combustion Conference
,
Langley, VA
,
1980
.
72.
J.
Majdalani
,
B.
Entezam
, and
W. K.
Van Moorhem
, “
A novel investigation of the thermoacoustic fields inside a Rijke tube
,” AIAA Paper 98–2582, Albuquerque, NM,
1998
. 7th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, 15–18 June, Albuquerque, New Mexico.
73.
J.
Majdalani
,
B.
Entezam
, and
W. K.
Van Moorhem
, “
The Rijke tube revisited via laboratory and numerical experiments
,” AIAA Paper 2001-2961, Anaheim, CA,
2001
. 35th AIAA Thermophysics Conference, 11–14 June.
74.
B.
Entezam
,
W. K.
Van Moorhem
, and
J.
Majdalani
, “
A full-scale numerical model of the thermoacoustic interactions inside the Rijke tube pulse combustor
,”
Numer. Heat Transfer, Part A
41
,
245
(
2002
).
75.
F. S.
Blomshield
and
H. B.
Mathes
, “
Pressure oscillations in post-challenger space shuttle redesigned solid rocket motors
,”
J. Propul. Power
9
,
217
(
1993
).
You do not currently have access to this content.