Taylor’s incompressible and rotational profile is extended to a porous cylinder with arbitrary headwall injection. This profile, often referred to as Culick’s mean flow, is now generalized to permit the imposition of reactive headwall conditions. Starting with Euler’s steady equations, the solution that we derive is approximate, being exact only at the sidewall, the centerline, or for similarity-conforming inlet profiles. Furthermore, the approximation is quasiviscous, being observant of the no slip requirement at the sidewall. Based on numerical experiments under inviscid flow conditions, the closed-form approximation that we obtain appears to be well suited to describe the bulk flow field in basic models of solid and hybrid rockets where uniform sidewall injection is imposed at the propellant surface. For similarity-nonconforming profiles, the approximation becomes more accurate as we move away from the headwall. Results are verified using computational fluid dynamics for several headwall injection patterns.

1.
F. E. C.
Culick
, “
Rotational axisymmetric mean flow and damping of acoustic waves in a solid propellant rocket
,”
AIAA J.
4
,
1462
(
1966
).
2.
G. I.
Taylor
, “
Fluid flow in regions bounded by porous surfaces
,”
Proc. R. Soc. London, Ser. A
234
,
456
(
1956
).
3.
R.
Dunlap
,
P. G.
Willoughby
, and
R. W.
Hermsen
, “
Flow field in the combustion chamber of a solid propellant rocket motor
,”
AIAA J.
12
,
1440
(
1974
).
4.
J. D.
Baum
,
J. N.
Levine
, and
R. L.
Lovine
, “
Pulsed instabilities in rocket motors: A comparison between predictions and experiments
,”
AIAA J.
4
,
308
(
1988
).
5.
J. S.
Sabnis
,
H. J.
Gibeling
, and
H.
McDonald
, “
Navier-Stokes analysis of solid propellant rocket motor internal flows
,”
AIAA J.
5
,
657
(
1989
).
6.
K.
Yamada
,
M.
Goto
, and
N.
Ishikawa
, “
Simulative study of the erosive burning of solid rocket motors
,”
AIAA J.
14
,
1170
(
1976
).
7.
R.
Dunlap
,
A. M.
Blackner
,
R. C.
Waugh
,
R. S.
Brown
, and
P. G.
Willoughby
, “
Internal flow field studies in a simulated cylindrical port rocket chamber
,”
AIAA J.
6
,
690
(
1990
).
8.
C. D.
Clayton
, “
Flowfields in solid rocket motors with tapered bores
,” AIAA Paper 96-2643, Lake Buena Vista, Fl,
1996
.
9.
S.
Balachandar
,
J. D.
Buckmaster
, and
M.
Short
, “
The generation of axial vorticity in solid-propellant rocket-motor flows
,”
J. Fluid Mech.
429
,
283
(
2001
).
10.
J.
Majdalani
and
T. S.
Roh
, “
The oscillatory channel flow with large wall injection
,”
Proc. R. Soc. London, Ser. A
456
,
1625
(
2000
).
11.
J.
Majdalani
and
G. A.
Flandro
, “
The oscillatory pipe flow with arbitrary wall injection
,”
Proc. R. Soc. London, Ser. A
458
,
1621
(
2002
).
12.
P.
Kuentzmann
,
Combustion Instabilities
(
AGARDograph, Princeton University
,
Princeton
,
1991
).
13.
J. C.
Traineau
,
P.
Hervat
, and
P.
Kuentzmann
, “
Cold-flow simulation of a two-dimensional nozzleless solid-rocket motor
,” AIAA Paper 86-1447, Huntsville, AL,
1986
.
14.
S.
Apte
and
V.
Yang
, “
Effect of acoustic oscillation on flow development in a simulated nozzleless rocket motor
,” in
Solid Propellant Chemistry, Combustion, and Motor Interior Ballistics
, edited by
V.
Yang
,
T. B.
Brill
, and
W.-Z.
Ren
(
AIAA
,
Washington, D.C.
,
2000
), Vol.
185
, pp.
791
822
.
15.
J.
Griffond
,
G.
Casalis
, and
J.-P.
Pineau
, “
Spatial instability of flow in a semiinfinite cylinder with fluid injection through its porous walls
,”
Eur. J. Mech. B/Fluids
19
,
69
(
2000
).
16.
J.
Griffond
and
G.
Casalis
, “
On the nonparallel stability of the injection induced two-dimensional Taylor flow
,”
Phys. Fluids
13
,
1635
(
2001
).
17.
T.
Féraille
and
G.
Casalis
, “
Channel flow induced by wall injection of fluid and particles
,”
Phys. Fluids
15
,
348
(
2003
).
18.
J.
Majdalani
,
A. B.
Vyas
, and
G. A.
Flandro
, “
Higher mean-flow approximation for a solid rocket motor with radially regressing walls
,”
AIAA J.
40
,
1780
(
2002
).
19.
J.
Majdalani
and
A. B.
Vyas
, “
Inviscid models of the classic hybrid rocket
,” AIAA Paper 2004-3474, Fort Lauderdale, FL, 2004.
20.
J.
Griffond
and
G.
Casalis
, “
On the dependence on the formulation of some nonparallel stability approaches applied to the Taylor flow
,”
Phys. Fluids
12
,
466
(
2000
).
21.
Y.
Fabignon
,
J.
Dupays
,
G.
Avalon
,
F.
Vuillot
,
N.
Lupoglazoff
,
G.
Casalis
, and
M.
Prévost
, “
Instabilities and pressure oscillations in solid rocket motors
,”
Aerosp. Sci. Technol.
7
,
191
(
2003
).
22.
F.
Chedevergne
,
G.
Casalis
, and
T.
Féraille
, “
Biglobal linear stability analysis of the flow induced by wall injection
,”
Phys. Fluids
18
,
014103
14
(
2006
).
23.
A. S.
Berman
, “
Laminar flow in channels with porous walls
,”
J. Appl. Phys.
24
,
1232
(
1953
).
You do not currently have access to this content.