The slumping and subsequent arrest of initially motionless granular materials from behind a rapidly removed lockgate in a sloping two-dimensional channel is considered theoretically and experimentally. The theory is based upon a shallow layer description of the flow and arrest of the grains in which resistance to the downslope motion is modelled as a Coulomb drag with a constant coefficient of friction. The flows leave a thin layer of deposited material along the chute and the depth of the deposit at the rear of the lock is predicted from the theoretical model using asymptotic techniques. This analysis explains the dependence on the initial aspect ratio of the release that has been seen in previous numerical and experimental studies of granular slumps over horizontal surfaces. The theoretical predictions of this depth are also compared with laboratory observations of the slumping of four dry granular materials. It is shown that there is quantitative agreement between the experimental measurements and the theoretical predictions, which include no fitting parameters. The theoretical predictions for the length along the chute that the materials slump, however, are not in agreement with the theoretical model and potential reasons for this mismatch are discussed.

1.
G.
Lube
,
H. E.
Huppert
,
R. S. J.
Sparks
, and
M. A.
Hallworth
, “
Axisymmetric collapses of granular columns
,”
J. Fluid Mech.
508
,
175
(
2004
).
2.
E.
Lajeunesse
,
A.
Mangeney-Castelnau
, and
J. P.
Vilotte
, “
Spreading of a granular mass on a horizontal plane
,”
Phys. Fluids
16
,
2371
(
2004
).
3.
N. J.
Balmforth
and
R. R.
Kerswell
, “
Granular collapse in two dimensions
,”
J. Fluid Mech.
538
,
399
(
2005
).
4.
E.
Lajeunesse
,
J. B.
Monnier
, and
G. M.
Homsy
, “
Granular slumping on a horizontal surface
,”
Phys. Fluids
17
,
103302
(
2005
).
5.
G.
Lube
,
H. E.
Huppert
,
R. S. J.
Sparks
, and
A.
Freundt
, “
Collapses of two-dimensional granular columns
,”
Phys. Rev. E
72
,
041301
(
2005
).
6.
A.
Siavoshi
and
A.
Kudrolli
, “
Failure of a granular step
,”
Phys. Rev. E
71
,
051302
(
2005
).
7.
R.
Zenit
, “
Computer simulations of the collapse of a granular column
,”
Phys. Fluids
17
,
031703
(
2005
).
8.
L.
Staron
and
E. J.
Hinch
, “
Study of the collapse of granular columns using two-dimensional discrete-grain simulation
,”
J. Fluid Mech.
545
,
1
(
2006
).
9.
R. R.
Kerswell
, “
Dam break with Coulomb friction: A model for granular slumping
?”
Phys. Fluids
17
,
057101
(
2005
).
10.
A.
Mangeney-Castelnau
,
F.
Bouchut
,
J. P.
Vilotte
,
E.
Lajeunesse
,
A.
Aubertin
, and
M.
Pirulli
, “
On the use of Saint Venant equations to simulate the spreading of a granular mass
,”
J. Geophys. Res.
110
,
B09103
(
2005
).
11.
E.
Larrieu
,
L.
Staron
, and
E. J.
Hinch
, “
Raining into shallow water as a description of the collapse of a column of grains
,”
J. Fluid Mech.
554
,
259
(
2006
).
12.
R. P.
Denlinger
and
R. M.
Iverson
, “
Granular avalanches across irregular three-dimensional terrain: 1. Theory and computation
,”
J. Geophys. Res.
109
,
F01014
(
2004
).
13.
G.
Lube
,
H. E.
Huppert
,
R. S. J.
Sparks
, and
A.
Freundt
, “
Static and flowing regions in granular collapses down channels
,”
Phys. Fluids
19
,
043301
(
2007
).
14.
G. B.
Whitham
,
Linear and Nonlinear Waves
(
Wiley
,
New York
,
1974
), p.
636
.
15.
A. J.
Hogg
and
D.
Pritchard
, “
The effects of drag on dam-break and other shallow inertial flows
,”
J. Fluid Mech.
501
,
179
(
2004
).
16.
S. B.
Savage
and
K.
Hutter
, “
The motion of a finite mass of granular material down a rough incline
,”
J. Fluid Mech.
199
,
177
(
1989
).
17.
O.
Pouliquen
and
Y.
Forterre
, “
Friction law for dense granular flows: Application to the motion of a mass down a rough inclined plane
,”
J. Fluid Mech.
453
,
133
(
2002
).
18.
J. M. N. T.
Gray
,
Y. C.
Tai
, and
S.
Noelle
, “
Shock waves, dead zones and particle-free regions in rapid granular free-surface flows
,”
J. Fluid Mech.
491
,
161
(
2003
).
19.
K. M.
Hákonardóttir
and
A. J.
Hogg
, “
Oblique shocks in rapid granular flows
,”
Phys. Fluids
17
,
077101
(
2005
).
20.
A.
Mangeney-Castelnau
,
J. P.
Vilotte
,
M. O.
Bristeau
,
B.
Perthame
,
F.
Bouchut
,
C.
Simeoni
, and
S.
Yerneni
, “
Numerical modelling of avalanches based on Saint Venant equations using a kinetic scheme
,”
J. Geophys. Res.
108
,
2527
(
2003
).
21.
P.
Jop
,
Y.
Forterre
, and
O.
Pouliquen
, “
A constitutive law for dense granular flow
,”
Nature (London)
441
,
727
(
2006
).
22.
A. J.
Hogg
, “
Lock-release gravity currents and dam-break flows
,”
J. Fluid Mech.
569
,
61
(
2006
).
23.
K. M.
Hákonardóttir
, “
Retarding effects of braking mounds: Granular flows
,” Master’s thesis,
School of Mathematics, University of Bristol
,
2000
.
You do not currently have access to this content.