Despite the temporal and spatial complexity of common fluid flows, model dimensionality can often be greatly reduced while both capturing and illuminating the nonlinear dynamics of the flow. This work follows the methodology of direct numerical simulation (DNS) followed by proper orthogonal decomposition (POD) of temporally sampled DNS data to derive temporal and spatial eigenfunctions. The DNS calculations use Chorin’s projection scheme; two-dimensional validation and results are presented for driven cavity and square cylinder wake flows. The flow velocity is expressed as a linear combination of the spatial eigenfunctions with time-dependent coefficients. Galerkin projection of these modes onto the Navier-Stokes equations obtains a dynamical system with quadratic nonlinearity and explicit Reynolds number (Re) dependence. Truncation to retain only the most energetic modes produces a low-dimensional model for the flow at the decomposition Re. We demonstrate that although these low-dimensional models reproduce the flow dynamics, they do so with small errors in amplitude and phase, particularly in their long term dynamics. This is a generic problem with the POD dynamical system procedure and we discuss the schemes that have so far been proposed to alleviate it. We present a new stabilization algorithm, which we term intrinsic stabilization, that projects the error onto the POD temporal eigenfunctions, then modifies the dynamical system coefficients to significantly reduce these errors. It requires no additional information other than the POD. The premise that this method can correct the amplitude and phase errors by fine-tuning the dynamical system coefficients is verified. Its effectiveness is demonstrated with low-dimensional dynamical systems for driven cavity flow in the periodic regime, quasiperiodic flow at Re=10000, and the wake flow. While derived in a POD context, the algorithm has broader applicability, as demonstrated with the Lorenz system.

1.
P.
Holmes
,
J. L.
Lumley
, and
G.
Berkooz
,
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
(
Cambridge University Press
,
Cambridge, UK
,
1996
).
2.
D.
Rempfer
, “
On low-dimensional Galerkin models for fluid flow
,”
Theor. Comput. Fluid Dyn.
14
,
75
(
2000
).
3.
A. K.
Bangia
,
P. F.
Batcho
,
I. G.
Kevrekidis
, and
G. E.
Karniadakis
, “
Unsteady two-dimensional flows in complex geometries: comparative bifurcation studies with global eigenfunction expansions
,”
SIAM J. Sci. Comput. (USA)
18
,
775
(
1997
).
4.
B. H.
Jørgensen
, “
Low-dimensional modeling of a driven cavity flow with two free parameters
,”
Theor. Comput. Fluid Dyn.
16
,
299
(
2003
).
5.
B. R.
Noack
,
K.
Afansiev
,
M.
Morzynski
,
G.
Tadmor
, and
F.
Thiele
, “
A hierarchy of low-dimensional models for the transient and post-transient cylinder wake
,”
J. Fluid Mech.
497
,
335
(
2003
).
6.
V.
Kalb
, “
Low-dimensional models for fluid flow
,” Ph.D. dissertation,
University of Maryland
, College Park, MD (
2004
).
7.
J. L.
Lumley
, “
The structure of inhomogeneous turbulent flows
,” in
Atmospheric Turbulence and Radio Wave Propagation
, edited by
A. M.
Yaglom
and
V. L.
Tararsky
(
Nauka
,
Moscow
,
1967
), pp.
166
178
.
8.
K.
Karhunen
, “
Zur Spektraltheorie stochastischer Prozesse
,”
Ann. Acad. Sci. Fenn., Ser. A1: Math.-Phys.
37
,
1
(
1946
).
9.
M. M.
Loève
,
Probability Theory
(
Van Nostrand
,
Princeton, NJ
,
1955
).
10.
Y. C.
Liang
,
H. P.
Lee
,
S. P.
Lim
,
W. Z.
Lin
,
K. H.
Lee
, and
C. G.
Wu
, “
Proper orthogonal decomposition and its applications, part I: theory
,”
J. Sound Vib.
252
,
527
(
2002
).
11.
M.
Rathinam
and
L. R.
Petzold
, “
A new look at proper orthogonal decomposition
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
41
,
1893
(
2003
).
12.
C.
López
and
E.
Hernández-García
, “
Low-dimensional dynamical system model for observed coherent satellite data
,”
Physica A
328
,
233
(
2003
).
13.
W. R.
Graham
,
J.
Peraire
, and
K. Y.
Tang
, “
Optimal control of vortex shedding using low order models: Part I: Open-loop model development
,”
Int. J. Numer. Methods Eng.
44
,
945
(
1999
).
14.
E. A.
Gillies
, “
Low-dimensional control of the circular cylinder wake
,”
J. Fluid Mech.
371
,
157
(
1998
).
15.
L.
Sirovich
, “
Turbulence and the dynamics of coherent structures part I: coherent structures
,”
Q. Appl. Math.
45
,
561
(
1987
).
16.
N.
Aubry
, “
On the hidden beauty of the proper orthogonal decomposition
,”
Theor. Comput. Fluid Dyn.
2
,
339
(
1991
).
17.
A. E.
Deane
,
I. G.
Kevrekidis
,
G. E.
Karniadakis
, and
S. A.
Orszag
, “
Low-dimensional models for complex geometry flow: application to grooved channels and circular cylinders
,”
Phys. Fluids A
3
,
2337
(
1991
).
18.
A.
Sohankar
,
C.
Norberg
, and
L.
Davidson
, “
Simulation of three-dimensional flow around a square cylinder at moderate Reynolds numbers
,”
Phys. Fluids
11
,
288
(
1999
).
19.
L.
Prandtl
,
Essentials of Fluid Dynamics
(
Hafner
,
New York
,
1953
).
20.
W.
Cazemier
,
R. W. C. P.
Verstappen
, and
A. E. P.
Veldman
, “
Proper orthogonal decomposition and low-dimensional models for driven cavity flows
,”
Phys. Fluids
10
,
1685
(
1998
).
21.
A. J.
Chorin
, “
Numerical solution of the Navier-Stokes equations
,”
Math. Comput.
22
,
745
(
1968
).
22.
M.
Griebel
,
T.
Dormseifer
, and
T.
Neunhoeffer
,
Numerical Simulation in Fluid Dynamics
(
SIAM
,
Philadelphia
,
1998
).
23.
F.
Harlow
and
J.
Welch
, “
Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface
,”
Phys. Fluids
8
,
2182
(
1965
).
24.
J.
Kim
and
P.
Moin
, “
Application of a fractional step method to incompressible Navier-Stokes equations
,”
J. Comput. Phys.
59
,
308
(
1985
).
25.
U.
Ghia
,
K. N.
Ghia
, and
C. T.
Shin
, “
High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method
,”
J. Comput. Phys.
48
,
387
(
1982
).
26.
O.
Botella
and
R.
Peyret
, “
Benchmark spectral results on the lid-driven cavity flow
,”
Comput. Fluids
27
,
421
(
1998
).
27.
C. W.
Oosterlee
,
P.
Wesseling
,
A.
Segal
, and
E.
Brakkee
, “
Benchmark solutions for the incompressible Navier-Stokes equations in general coordinates on staggered grids
,”
Int. J. Numer. Methods Fluids
17
,
301
(
1993
).
28.
P. M.
Gresho
,
D. K.
Gartling
,
J. R.
Torczynski
,
K. A.
Cliffe
,
K. H.
Winters
,
T. J.
Garratt
,
A.
Spence
, and
J. W.
Goodrich
, “
Is the steady viscous incompressible two-dimensional flow over a backward-facing step at Re800 stable
,”
Int. J. Numer. Methods Fluids
17
,
501
(
1993
).
29.
G. E.
Karniadakis
,
M.
Israeli
, and
S. A.
Orszag
, “
High-order splitting methods for the incompressible Navier-Stokes equations
,”
J. Comput. Phys.
97
,
414
(
1991
).
30.
B.
Galletti
,
C. H.
Bruneau
,
L.
Zannetti
, and
A.
Iollo
, “
Low-order modelling of laminar flow regimes past a confined square cylinder
,”
J. Fluid Mech.
503
,
161
(
2004
).
31.
B. R.
Noack
,
P.
Papas
, and
P. A.
Monkewitz
, “
The need for a pressure-term representation in empirical Galerkin models of incompressible shear flows
,”
J. Fluid Mech.
523
,
339
(
2005
).
32.
M.
Marion
and
R.
Temam
, “
Nonlinear Galerkin methods
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
26
,
1139
(
1989
).
33.
S.
Sirisup
and
G. E.
Karniadakis
, “
A spectral viscosity method for correcting the long-term behavior of POD models
,”
J. Comput. Phys.
194
,
92
(
2004
).
34.
B.
Podvin
and
P.
Le Quéré
, “
Low-order models for the flow in a differentially heated cavity
,”
Phys. Fluids
13
,
3204
(
2001
).
35.
X.
Ma
and
G. E.
Karniadakis
, “
A low-dimensional model for simulating 3D cylinder flow
,”
J. Fluid Mech.
458
,
181
(
2002
).
36.
E.
Tadmor
, “
Convergence of spectral methods for nonlinear conservation laws
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
26
,
30
(
1989
).
37.
E. J.
Doedel
,
A. R.
Champneys
,
T. F.
Fairgrieve
,
Y. A.
Kuznetsov
,
B.
Sandstede
, and
X.
Wang
, “
AUTO 97: Continuation and bifurcation software for ordinary differential equations (with HomCont)
,” http://indy.cs.concordia.ca/auto (
1998
).
38.
K. T.
Alligood
,
T. D.
Sauer
, and
J. A.
Yorke
,
CHAOS: An Introduction to Dynamical Systems
(
Springer-Verlag
,
New York
,
1996
).
You do not currently have access to this content.