The turbulent boundary layer approaching a wall-mounted obstacle experiences a strong adverse pressure gradient and undergoes three-dimensional separation leading to the formation of a dynamically rich horseshoe vortex (HSV) system. In a pioneering experimental study, Devenport and Simpson [J. Fluid Mech.210, 23 (1990)] showed that the HSV system forming at the leading edge region of a wing mounted on a flat plate at Re=1.15×105 exhibits bimodal, low-frequency oscillations, which away from the wall produce turbulent energy and stresses one order of magnitude higher than those produced by the conventional shear mechanism in the approaching turbulent boundary layer. We carry out numerical simulations for the experimental configuration of Devenport and Simpson using the detached-eddy-simulation (DES) approach. The DES length scale is adjusted for this flow to alleviate the well known shortcoming of DES; namely that of premature, laminar-like flow separation. The numerical simulations reproduce with good accuracy most experimental observations, including both the distributions of the mean flow and turbulence quantities and the bimodal dynamics of the velocity field in the HSV region. The only remaining discrepancy between experiments and simulations is the predicted location of the HSV, which is somewhat further upstream from the wing than the measured one. Proper orthogonal decomposition (POD) of the resolved flow field is employed to gain insights into the coherent dynamics of the flow. The POD analysis shows that 85% of the energy in the vortex region is accounted for by the first two POD modes whose dynamics is quasiperiodic. To elucidate the physical mechanisms that lead to the onset of the bimodal dynamics, we employ probability-density-function-based conditional averaging and visualization of the instantaneous three-dimensional structure of the HSV using the q criterion. We show that the bimodal dynamics is due to the continuous and aperiodic interplay of two basic states: an organized state with a coherent necklace-like HSV, and a disorganized state with hairpin vortices wrapping around the HSV. We argue that the emergence of hairpin vortices is the result of centrifugal instability.

1.
W. J.
Devenport
and
R. L.
Simpson
, “
Time-dependent and time-averaged turbulence structure near the nose of a wing-body junction
,”
J. Fluid Mech.
210
,
23
(
1990
).
2.
R.
Martinuzzi
and
C.
Tropea
, “
The flow around surface-mounted, prismatic obstables placed in a fully developed channel flow
,”
J. Fluids Eng.
115
,
85
(
1993
).
3.
H.
Hussein
and
R. J.
Martinuzzi
, “
Energy balance for turbulent flow around a surface mounted cube placed in a channel
,”
Phys. Fluids
8
,
764
(
1996
).
4.
C. J.
Baker
, “
The turbulent horseshoe vortex
,”
J. Wind. Eng. Ind. Aerodyn.
6
,
9
(
1980
).
5.
B.
Dargahi
, “
The turbulent flow field around a circular cylinder
,”
Exp. Fluids
8
,
1
(
1989
).
6.
J. H.
Agui
and
J.
Andreopoulos
, “
Experimental investigation of a three dimensional boundary layer flow in the vicinity of an upright wall mounted cylinder
,”
J. Fluids Eng.
114
,
566
(
1992
).
7.
R. L.
Simpson
, “
Junction flows
,”
Annu. Rev. Fluid Mech.
33
,
415
(
2001
).
8.
H. C.
Chen
, “
Assessment of a Reynolds stress closure model for appendage-hull junction flows
,”
J. Fluids Eng.
117
,
557
(
1995
).
9.
S.
Fu
,
T.
Rung
,
F.
Thiele
, and
Z.
Zhai
, in
Proceedings of the 11th Symposium on Turbulent Shear Flows
, edited by
M.
Lesieur
,
B. E.
Launder
,
G.
Binder
, and
J. H.
Whitelaw
(
Grenoble
, France,
1997
), pp.
6
7
6
12
.
10.
S.
Parneix
,
P. A.
Durbin
, and
M.
Behnia
, “
Computation of 3-D turbulent boundary layers using the V2F model
,”
Flow, Turbul. Combust.
60
,
19
(
1998
).
11.
D.
Apsley
and
M.
Leschziner
, “
Investigation of advanced turbulence models for the flow in a generic wing-body junction
,”
Flow, Turbul. Combust.
67
,
25
(
2001
).
12.
W.
Rodi
, “
Comparison of LES and RANS calculations of the flow around bluff bodies
,”
J. Wind. Eng. Ind. Aerodyn.
69
,
55
(
1997
).
13.
W.
Rodi
,
J.
Ferziger
,
M.
Breuer
, and
M.
Pourquié
, “
Status of large-eddy simulation: Results of a workshop
,”
J. Fluids Eng.
119
,
248
(
1997
).
14.
K. B.
Shah
and
J. H.
Ferziger
, “
A fluid mechanicians view of wind engineering: Large eddy simulation of flow past a cubic obstacle
,”
J. Wind. Eng. Ind. Aerodyn.
67
,
211
(
1997
).
15.
S.
Krajnović
and
L.
Davidson
, “
Large-eddy simulation of the flow around a bluff body
,”
AIAA J.
40
,
927
(
2002
).
16.
D.
Lakehal
and
W.
Rodi
, “
Calculation of the flow past a surface-mounted cube with two-layer turbulence models
,”
J. Wind. Eng. Ind. Aerodyn.
67
,
65
(
1997
).
17.
G.
Iaccarino
,
A.
Ooi
,
P. A.
Durbin
, and
M.
Behnia
, “
Reynolds averaged simulation of unsteady separated flow
,”
Int. J. Heat Fluid Flow
24
,
147
(
2003
).
18.
A.
Yakhot
,
H.
Liu
, and
N.
Nikitin
, “
Turbulent flow around a wall-mounted cube: A direct numerical simulation
,”
Int. J. Heat Fluid Flow
27
,
994
(
2006
).
19.
P. R.
Spalart
,
W. H.
Jou
,
M.
Strelets
, and
S. R.
Allmaras
, in
Advances in DNS/LES
, edited by
C.
Liu
and
Z.
Liu
(
Greyden
, Columbus, OH,
1997
).
20.
E. G.
Paterson
and
L. J.
Peltier
, “
Detached-eddy simulation of high-Reynolds-number beveled-trailing-edge boundary layers and wakes
,”
J. Fluids Eng.
127
,
897
(
2005
).
21.
F. R.
Menter
,
M.
Kuntz
, and
R.
Bender
, “
A scale-adaptive simulation model for turbulent flow predictions
,” AIAA Paper 2003-0767 (
2003
).
22.
P.
Holmes
,
J. L.
Lumley
, and
G.
Berkooz
,
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
(
Cambridge University Press
,
Cambridge
,
1996
).
23.
P. R.
Spalart
and
S. R.
Allmaras
, “
A one-equation turbulence model for aerodynamic flows
,”
Rech. Aerosp.
1
,
5
(
1994
).
24.
K. D.
Squires
,
J. R.
Forsythe
, and
P. R.
Spalart
, “
Detached-eddy simulation of the separated flow over a rounded-corner square
,”
J. Fluids Eng.
127
,
959
(
2005
).
25.
M.
Shur
,
P. R.
Spalart
,
M.
Strelets
, and
A.
Travin
, in
Turbulent Shear Flows
, edited by
W.
Rodi
and
D.
Laurence
(
Elsevier Science
, Amsterdam,
1999
), pp.
669
678
.
26.
F.
Sotiropoulos
and
S.
Abdallah
, “
The discrete continuity equation in primitive variable solutions of incompressible flow
,”
J. Comput. Phys.
95
,
212
(
1991
).
27.
J.
Paik
,
F.
Sotiropoulos
, and
M. J.
Sale
, “
Numerical simulation of swirling flow in a hydroturbine draft tube using unsteady statistical turbulence models
,”
J. Hydraul. Eng.
131
,
441
(
2005
).
28.
J.
Paik
,
L.
Ge
, and
F.
Sotiropoulos
, “
Toward the simulation of complex 3D shear flows using unsteady statistical turbulence models
,”
Int. J. Heat Fluid Flow
25
,
513
(
2004
).
29.
J.
Paik
and
F.
Sotiropoulos
, “
Coherent structure dynamics upstream of a long rectangular block at the side of a large aspect ratio channel
,”
Phys. Fluids
17
,
115104
(
2005
).
30.
L. H.
Norris
and
W. C.
Reynolds
, Report FM-10,
Dept. of Mech. Eng., Stanford University
, Stanford, CA (
1975
).
31.
C. V.
Seal
,
C. R.
Smith
,
O.
Akin
, and
D.
Rockwell
, “
Quantitative characteristics of a laminar necklace vortex system at a rectangular block-flat plate juncture
,”
J. Fluid Mech.
286
,
117
(
1995
).
32.
H. D.
Pasinato
,
K. D.
Squires
, and
R. P.
Roy
, “
Assessment of Reynolds-averaged turbulence models for prediction of the flow and heat transfer in an inlet vane-endwall passage
,”
J. Fluids Eng.
126
,
305
(
2004
).
33.
T. L.
Doligalski
,
C. R.
Smith
, and
J. D. A.
Walker
, “
Vortex interactions with walls
,”
Annu. Rev. Fluid Mech.
26
,
573
(
1994
).
34.
J. D.
Horel
, “
Complex principal components analysis
,”
J. Clim. Appl. Meteorol.
23
,
1660
(
1984
).
35.
L.
Sirovich
, “
Chaotic dynamics of coherent structures
,”
Physica D
37
,
126
(
1989
).
36.
J. C. R.
Hunt
,
A. A.
Wray
, and
P.
Moin
, in
Proceedings of the Summer Program
(
Center for Turbulence Research
, NASA Ames/Stanford University,
1988
), pp.
193
208
.
37.
J.
Jeong
and
F.
Hussain
, “
On the identification of a vortex
,”
J. Fluid Mech.
285
,
69
(
1995
).
38.
Y.
Dubief
and
F.
Delcayre
, “
On coherent-vortex identification in turbulence
,”
J. Turbul.
1
,
1
(
2000
).
39.
K.
Fraňa
,
J.
Stiller
, and
R.
Grundmann
, “
Taylor-Görtler vortices in the flow driven by a rotating magnetic field in a cylindrical container
,”
J. Visualization
8
,
323
(
2005
).
40.
J. M.
Floryan
, “
Görtler instability of boundary layers over concave and convex walls
,”
Phys. Fluids
29
,
2380
(
1986
).
41.
Lord
Rayleigh
, “
On the dynamics of revolving fluids
,” Scientific Paper 6,
447
(
1916
).
42.
J. J.
Allen
and
T.
Naitoh
, “
Scaling and instability of a junction vortex
,”
J. Fluid Mech.
574
,
1
(
2007
).
43.
J. R.
Koseff
and
R. L.
Street
, “
The lid-driven cavity flow: A synthesis of qualitative and quantitative observations
,”
J. Fluids Eng.
106
,
390
(
1984
).
44.
C. K.
Aidun
,
N. G.
Triantafillopoulos
, and
J. D.
Benson
, “
Global stability of a lid-driven cavity with throughflow: Flow visualization studies
,”
Phys. Fluids A
3
,
2081
(
1991
).
45.
A.
Yakhot
,
T.
Anor
,
H.
Liu
, and
N.
Nikitin
, “
Direct numerical simulation of turbulent flow around a wall-mounted cube: Spatio-temporal evolution of large-scale vortices
,”
J. Fluid Mech.
566
,
1
(
2006
).
46.
P.
Spalart
,
S.
Deck
,
M.
Shur
,
K.
Squires
,
M.
Strelets
, and
A.
Travin
, “
A new version of detached-eddy simulation, resistant to ambiguous grid densities
,”
Theor. Comput. Fluid Dyn.
20
,
181
(
2006
).
You do not currently have access to this content.