Propagation of acoustic waves originating from periodic vortices deforming in a nonuniform flow about a rigid body is examined numerically using a high-order compact finite-difference approximation. The governing equations are approximated by the linearized Euler equations in terms of disturbances. The aim of the study is to determine the sound directivity and strength as a result of the vortex street interaction with a solid body under subsonic base flow conditions. Both the vortex core diameter and vortex street spacing have a minor influence on the amplitude of the produced sound wave. When low-frequency vortex streets interact with a cylinder, the produced sound waves are very different from those that originated from high-frequency vortex streets. The interaction mechanism, sound generation, and propagation in a nonuniform flow are quite different for Taylor and Vatistas’ vortex streets. In the case of a low-frequency Vatistas vortex street, the root-mean-square (RMS) value of the acoustic pressure has a well-defined sound directivity and amplitude. The former is greatly affected by the Mach number of the mean flow. For a high-frequency Vatistas vortex street, the RMS of acoustic pressure becomes highly nonmonotonic in the angular direction, while the mean flow Mach number has a moderate effect on the RMS angular profile. The striking differences in the sound amplitude and directivity for Taylor and Vatistas vortices are discussed in terms of their vorticity distribution.

1.
I.
Gursul
and
D.
Rockwell
, “
Vortex street impinging upon an illiptical leading edge
,”
J. Fluid Mech.
211
,
211
(
1990
).
2.
M. M.
Choudhary
and
M. R.
Khorrami
, “
Slat cove unsteadiness: Effect of 3-D flow structures
,” AIAA Paper 2006-0211, presented at the 44th AIAA Aerospace Science Meeting and Exhibit, Reno, NV (
2006
).
3.
N.
Curle
, “
The influence of solid boundaries upon aerodynamic sound
,”
Proc. R. Soc. London, Ser. A
231
,
505
(
1955
).
4.
G.
Lilley
, “
The prediction of airframe noise
,”
J. Sound Vib.
239
,
849
(
2001
).
5.
S. S.
Collis
,
K.
Ghayour
, and
M.
Heinkenschloss
, “
Optimal control of aeroacoustic noise generated by cylinder vortex interaction
,” International Journal of Aeroacoustics 1,
97
(
2002
).
6.
D.
Rockwell
, “
Vortex-body interactions
,”
Annu. Rev. Fluid Mech.
30
,
199
(
1998
).
7.
S. E.
Widnall
, “
Helicopter noise due to blade/vortex interaction
,”
J. Acoust. Soc. Am.
50
, Pt. 2,
354
(
1971
).
8.
A.
Povitsky
, “
Numerical study of wave propagation in a nonuniform compressible flow
,”
Phys. Fluids
14
,
2657
(
2002
).
9.
M. J.
Lighthill
, “
On sound generated aerodynamically: I. General theory
,”
Proc. R. Soc. London, Ser. A
211
,
564
(
1952
).
10.
O.
Inoue
and
Y.
Hattori
, “
Sound generation by shock-vortex interactions
,”
J. Fluid Mech.
380
,
81
(
1999
).
11.
M. J.
Bhagwat
and
J. G.
Leishman
, “
Generalized viscous vortex model for application to free-vortex wake and aeroacoustics
,”
Proceedings of the 58th Annual Forum of the American Helicopter Society
, June, Montreal, Canada (
American Helicopter Society
,
2002
), ISSN: 1552-2938.
12.
G. H.
Vatistas
, “
New model for intense self-similar vortices
,”
J. Propul. Power
14
,
462
(
1998
).
13.
T.
Colonius
,
S. K.
Lele
, and
P.
Moin
, “
The scattering of sound waves by a vortex: Numerical simulations and analytical solutions
,”
J. Fluid Mech.
260
,
271
(
1994
).
14.
M. R.
Visbal
and
D. V.
Gaitonde
, “
High-order accurate methods for complex unsteady subsonic flows
,”
AIAA J.
37
,
1231
(
1999
).
15.
A.
Povitsky
,
T.
Zheng
, and
G.
Vatistas
, “
Effect of vortex profile on sound generation in a non-uniform flow
,”
Math. Comput. Simul.
65
,
447
(
2004
).
16.
T.
Zheng
,
G.
Vatistas
, and
A.
Povitsky
, “
Sound generation by one-cell and two-cell vortices
,”
J. Comput. Acoust.
14
,
321
(
2006
).
17.
J.
Hardin
and
D. S.
Pope
, “
A new technique for aerodynamic noise calculation
,”
Proceedings of the DGLRR/AIAA 14th Aeroacoustics Conference
, Washington, DC (
1992
), pp.
448
456
.
18.
S. A.
Slimon
,
M.
Soteriou
, and
D.
Davis
, “
Computational aeroacoustics simulations using the expansion about incompressible flow approach
,”
AIAA J.
37
,
409
(
1999
).
19.
B. A.
Singer
,
K. S.
Brentner
,
D. P.
Lockard
, and
G. M.
Lilley
, “
Simulation of acoustic scattering from a trailing edge
,
J. Sound Vib.
230
541
(
2000
).
20.
S. K.
Lele
, “
Compact finite difference scheme with spectral like resolution
,”
J. Comput. Phys.
103
,
16
(
1992
).
21.
J.
Williamson
, “
Low-storage Runge-Kutta schemes
,”
J. Comput. Phys.
35
,
48
(
1980
).
22.
G. I.
Taylor
, “
On the dissipation of eddies
,”
The Scientific Papers of Sir Geoffrey Ingram Taylor
(
Cambridge University Press
, Cambridge, UK,
1958
), Vol.
2
, pp.
96
101
.
23.
W. J.
Duncan
,
A. S.
Thom
, and
A. D.
Young
,
Mechanics of Fluids
(
Edward Arnold LTD
, London,
1970
).
24.
F. Q.
Hu
, “
A stable, perfectly matched layer for linearized Euler equations in unsplit physical variables
,”
J. Comput. Phys.
173
,
455
(
2001
).
25.
A.
Povitsky
,
T.
Zheng
, and
G.
Vatistas
, “
Numerical study on propagation and scattering of sound by two cylinders
,”
Proceedings of the 4th CAA Workshop on Benchmark Problems
(
Ohio Aerospace Institute
,
Cleveland
,
2003
), pp.
283
290
.
26.
M. S.
Howe
,
Theory of Vortex Sound
(
Cambridge University Press
, Cambridge, UK,
2002
).
27.
T.
Kambe
,
T.
Minota
, and
M.
Takaoka
, “
Oblique collision of two vortex rings and its acoustic emission
,”
Phys. Rev. E
48
,
1866
(
1993
).
28.
T.
Camble
, “
Acoustic emissions by vortex motions
,”
J. Fluid Mech.
173
,
643
(
1986
).
29.
J.
Lighthill
,
Higher Approximation in Aerodynamic Theory
(
Princeton University Press
, Princeton, NJ,
1960
).
30.
M. A.
Saad
,
Compressible Fluid Flow
, 2nd ed. (
Prentice Hall
, Englewood Cliffs, NJ,
1993
).
31.
W.
Eversman
and
D.
Okunbor
, “
Aft fan duct acoustic radiation
,”
J. Sound Vib.
213
,
235
(
1998
).
You do not currently have access to this content.