Axially rotating turbulent pipe flow is an example in which the rotation strongly affects the turbulence, which then also influences the mean flow properties. For instance, in the fully developed flow as well, the fluid is not in solid body rotation due to the influence of the cross-stream Reynolds stress. The present paper reports new measurements from a rotating pipe flow and the streamwise mean velocity distribution is compared with recent scaling ideas of Oberlack [J. Fluid Mech.379, 1 (1999)] and good agreement is found. A second part of the paper deals with the initial stages when the flow leaves the pipe and forms a swirling jet. The measurements in the jet show that at some distance downstream (approximately five jet diameters) the central part of the jet actually rotates in the opposite direction as compared to the rotation of the pipe. This effect is explained by the influence of the cross-stream Reynolds shear stress.

1.
S.
Wallin
and
A.
Johansson
, “
An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flow
,”
J. Fluid Mech.
403
,
89
(
2000
).
2.
N. A.
Chigier
and
A.
Chervinsky
, “
Experimental investigation of swirling vortex motion in jets
,”
J. Appl. Mech.
34
,
443
(
1967
).
3.
T.
Pedley
, “
On the instability of viscous flow in a rapidly rotating pipe
,”
J. Fluid Mech.
35
,
97
(
1969
).
4.
P.-A.
Mackrodt
, “
Stability of Hagen-Poiseuille flow with superimposed rigid rotation
,”
J. Fluid Mech.
73
,
153
(
1976
).
5.
S.
Imao
,
M.
Itoh
,
Y.
Yamada
, and
Q.
Zhang
, “
The characteristics of spiral waves in an axially rotating pipe
,”
Exp. Fluids
12
,
277
(
1992
).
6.
A.
White
, “
Flow of a fluid in an axially rotating pipe
,”
J. Mech. Eng. Sci.
6
,
47
(
1964
).
7.
M.
Murakami
and
K.
Kikuyama
, “
Turbulent flow in axially rotating pipes
,”
J. Fluids Eng.
102
,
97
(
1980
).
8.
K.
Kikuyama
,
M.
Murakami
,
K.
Nishibori
, and
K.
Maeda
, “
Flow in an axially rotating pipe
,”
Bull. JSME
26
,
506
(
1983
).
9.
G.
Reich
and
H.
Beer
, “
Fluid flow and heat transfer in an axially rotating pipe–I. Effect of rotation on turbulent pipe flow
,”
Int. J. Heat Mass Transfer
32
,
551
(
1989
).
10.
S.
Imao
,
M.
Itoh
, and
T.
Harada
, “
Turbulent characteristics of the flow in an axially rotating pipe
,”
Int. J. Heat Mass Transfer
17
,
444
(
1996
).
11.
J.
Eggels
, Ph.D. thesis,
Delft University of Technology
, The Netherlands,
1994
.
12.
P.
Orlandi
and
M.
Fatica
, “
Direct simulations of turbulent flow in a pipe rotating about its axis
,”
J. Fluid Mech.
343
,
43
(
1997
).
13.
P.
Orlandi
, “
Helicity fluctuations and turbulent energy production in rotating and non-rotating pipes
,”
Phys. Fluids
9
,
2045
(
1997
).
14.
P.
Orlandi
and
D.
Ebstein
, “
Turbulent budgets in rotating pipes by DNS
,”
Int. J. Heat Mass Transfer
21
,
499
(
2000
).
15.
S.
Satake
and
T.
Kunugi
, “
Direct numerical simulation of turbulent heat transfer in an axially rotating pipe flow. Reynolds shear stress and scalar flux budgets
,”
Int. J. Numer. Methods Heat Fluid Flow
12
,
958
(
2002
).
16.
Z.
Yang
, “
Large eddy simulation of fully developed turbulent flow in a rotating pipe
,”
Int. J. Numer. Methods Fluids
33
,
681
(
2000
).
17.
A.
Feiz
,
M.
Ould-Rouis
, and
G.
Lauriat
, “
Large eddy simulation of turbulent flow in a rotating pipe
,”
Int. J. Heat Fluid Flow
24
,
412
(
2003
).
18.
P.
Bradshaw
, “
The analogy between streamline curvature and buoyancy in turbulent shear flow
,”
J. Fluid Mech.
36
,
177
(
1969
).
19.
B.
Weigand
and
H.
Beer
, “
On the universality of the velocity profiles of a turbulent flow in an axially rotating pipe
,”
Appl. Sci. Res.
52
,
115
(
1994
).
20.
S.
Hirai
,
T.
Takagi
, and
M.
Matsumoto
, “
Predictions of the laminarization phenomena in an axially rotating pipe flow
,”
J. Fluids Eng.
110
,
424
(
1988
).
21.
C.
Speziale
,
B.
Younis
, and
S.
Berger
, “
Analysis and modeling of turbulent flow in an axially rotating pipe
,”
J. Fluid Mech.
407
,
1
(
2000
).
22.
M.
Malin
and
B.
Younis
, “
Prediction of turbulent transport in an axially rotating pipe
,”
Int. Commun. Heat Mass Transfer
24
,
89
(
1997
).
23.
K.-J.
Rinck
and
H.
Beer
, “
Numerical calculation of the fully developed turbulent flow in an axially rotating pipe with a second-moment closure
,”
J. Fluids Eng.
120
,
274
(
1998
).
24.
A.
Kurbatskii
and
S.
Poroseva
, “
Modeling turbulent diffusion in a rotating cylindrical pipe flow
,”
Int. J. Heat Fluid Flow
20
,
341
(
1999
).
25.
O.
Grundestam
,
S.
Wallin
, and
A.
Johansson
, “
Observations on the predictions of fully developed rotating pipe flow using differential and explicit algebraic Reynolds stress models
,”
Eur. Phys. J. B
25
,
95
(
2006
).
26.
M.
Oberlack
, “
Similarity in non-rotating and rotating turbulent pipe flows
,”
J. Fluid Mech.
379
,
1
(
1999
).
27.
M.
Oberlack
, “
A unified approach for symmetries in plane parallel turbulent shear flows
,”
J. Fluid Mech.
427
,
299
(
2001
).
28.
P.
Billant
,
J.-M.
Chomaz
, and
P.
Huerre
, “
Experimental study of vortex breakdown in swirling jets
,”
J. Fluid Mech.
376
,
183
(
1998
).
29.
W. G.
Rose
, “
A swirling round turbulent jet
,”
J. Appl. Mech.
29
,
615
(
1962
).
30.
B. D.
Pratte
and
J. F.
Keffer
, “
The swirling turbulent jet
,”
J. Basic Eng.
93
,
739
(
1972
).
31.
S.
Komori
and
H.
Ueda
, “
Turbulent flow structure in the near field of a swirling round free jet
,”
Phys. Fluids
28
,
2075
(
1985
).
32.
T.
Loiseleux
and
J. M.
Chomaz
, “
Breaking of rotational symmetry in a swirling jet experiment
,”
Phys. Fluids
15
,
511
(
2003
).
33.
S.
Farokhi
,
R.
Taghavi
, and
E. J.
Rice
, “
Effect of initial swirl distribution on the evolution of a turbulent jet
,”
AIAA J.
27
,
700
(
1988
).
34.
J. P.
Sislian
and
R. A.
Cusworth
, “
Measurements of mean velocity and turbulent intensities in a free isothermal swirling jet
,”
AIAA J.
24
,
303
(
1986
).
35.
J.
Panda
and
D. K.
McLaughlin
, “
Experiments on the instabilities of a swirling jet
,”
Phys. Fluids
6
,
263
(
1994
).
36.
D. G.
Lilley
, “
Annular vane swirler performance
,”
J. Propul. Power
15
,
248
(
1999
).
37.
H. R.
Rahai
and
T. W.
Wong
, “
Velocity field characteristics of turbulent jets from round tubes with coil inserts
,”
Appl. Therm. Eng.
22
,
1037
(
2001
).
38.
S. H.
Park
and
H. D.
Shin
, “
Measurement of entrainment characteristics of swirling jets
,”
Int. J. Heat Mass Transfer
136
,
4009
(
1993
).
39.
S.
Farokhi
,
R.
Taghavi
, and
E. J.
Rice
, “
Modern development in shear flow control with swirl
,”
AIAA J.
30
,
1482
(
1992
).
40.
S.
McIlwain
and
A.
Pollard
, “
Large eddy simulation of the effects of mild swirl on the near field of a round free jet
,”
Phys. Fluids
14
,
653
(
2002
).
41.
L.
Facciolo
, Ph.D. thesis, KTH Mechanics,
Royal Institute of Technology
, Sweden, TRITA-MEK 2006:02,
2006
.
42.
R.
Verzicco
and
P.
Orlandi
, “
A finite-difference scheme for three-dimensional incompressible flows in cylindrical coordinates
,”
J. Comput. Phys.
123
,
402
(
1996
).
43.
L.
Facciolo
,
N.
Tillmark
, and
A.
Talamelli
, in
Proc. Third Int. Symp. Turbulence and Shear Flow Phenomena
,
Tohoku Univ., Sendai
,
2003
, pp.
1217
1222
.
44.
J. M.
Österlund
,
A.
Johansson
,
H. M.
Nagib
, and
M. H.
Hites
, “
A note on the overlap region in turbulent boundary layers
,”
Phys. Fluids
12
,
1
(
2000
).
45.
L.
Facciolo
and
P. H.
Alfredsson
, “
The counter-rotating core of a swirling turbulent jet issued from a rotating pipe flow
,”
Phys. Fluids
16
,
L71
(
2004
).
You do not currently have access to this content.