Hypersonic vehicles experience different flow regimes during flight due to changes in atmospheric density. Hybrid continuum-particle methods, based on computational fluid dynamics (CFD) and direct simulation Monte Carlo (DSMC) methods, are being developed to simulate the flow in different hypersonic regimes. These methods use a breakdown parameter to determine regions of the flow where the CFD physics are no longer valid. The current study investigates the effect of continuum breakdown on surface aerothermodynamic properties (pressure, shear stress, and heat transfer rate) of a cylinder in a Mach 10 flow of argon gas for several different flow regimes, from the continuum to a rarefied gas. CFD and DSMC solutions are obtained at each flow condition. Total drag predictions differ by less than 1% for a continuum flow while CFD predicts a 26% higher drag than DSMC for a rarefied flow. Peak heat transfer rate differences range from less than 1% for a continuum flow to more than 32% for a rarefied flow, again with CFD predicting the higher value. Differences in drag and heat transfer are expected to decrease with the use of velocity slip and temperature jump boundary conditions with the CFD method.

1.
G. A.
Bird
,
Gas Dynamics and the Direct Simulation of Gas Flows
(
Oxford University Press
, Oxford,
1994
).
2.
T. E.
Schwartzentruber
and
I. D.
Boyd
, “
A hybrid particle-continuum method applied to shock waves
,”
J. Comput. Phys.
215
,
402
(
2006
).
3.
H. S.
Wijesinghe
and
N. G.
Hadjiconstantinou
, “
Discussion of hybrid atomistic-continuum methods for multiscale hydrodynamics
,”
Int. J. Multiscale Comp. Eng.
2
,
189
(
2004
).
4.
O.
Aktas
and
N. R.
Aluru
, “
A combined continuum/DSMC technique for multiscale analysis of microfluidic filters
,”
J. Comput. Phys.
178
,
342
(
2002
).
5.
W.-L.
Wang
,
Q.
Sun
, and
I. D.
Boyd
, “
Towards development of a hybrid DSMC-CFD method for simulating hypersonic interacting flows
,” AIAA Paper 2002-3099 (
2002
).
6.
R.
Roveda
,
D. B.
Goldstein
, and
P. L.
Varghese
, “
Hybrid Euler/direct simulation Monte Carlo calculation of unsteady slit flow
,”
J. Spacecr. Rockets
37
,
753
(
2000
).
7.
A. L.
Garcia
,
J. B.
Bell
,
W. Y.
Crutchfield
, and
B. J.
Alder
, “
Adaptive mesh and algorithmic refinement using direct simulation Monte Carlo
,”
J. Comput. Phys.
154
,
134
(
1999
).
8.
R.
Roveda
,
D. B.
Goldstein
, and
P. L.
Varghese
, “
Hybrid Euler/particle approach for continuum/rarefied flows
,”
J. Spacecr. Rockets
35
,
258
(
1998
).
9.
D. B.
Hash
and
H. A.
Hassan
, “
Assessment of schemes for coupling Monte Carlo and Navier-Stokes solution methods
,”
J. Thermophys. Heat Transfer
10
,
242
(
1996
).
10.
G. A.
Bird
, “
Breakdown of translational and rotational equilibrium in gaseous expansions
,”
AIAA J.
8
,
1998
(
1970
).
11.
W.-L.
Wang
, Ph.D thesis,
The University of Michigan
(
2004
).
12.
I. D.
Boyd
,
G.
Chen
, and
G. V.
Candler
, “
Predicting failure of the continuum fluid equations in transitional hypersonic flows
,”
Phys. Fluids
7
,
210
(
1995
).
13.
S.
Tiwari
, “
Coupling of the Boltzmann and Euler equations with automatic domain decomposition
,”
J. Comput. Phys.
144
,
710
(
1998
).
14.
J. A.
Camberos
,
C. R.
Schrock
,
R. J.
McMullan
, and
R. D.
Branam
, “
Development of continuum onset criteria with direct simulation Monte-Carlo using Boltzmann’s H-theorem: Review and vision
,” AIAA Paper 2006-2942 (
2006
).
15.
G. V.
Candler
,
S.
Nijhawan
,
D.
Bose
, and
I. D.
Boyd
, “
A multiple translational temperature gas dynamics model
,”
Phys. Fluids
6
,
3776
(
1994
).
16.
M. J.
Wright
,
G. V.
Candler
, and
D.
Bose
, “
Data parallel line relaxation method for the Navier-Stokes equations
,”
AIAA J.
36
,
1603
(
1998
).
17.
M.
Wright
,
M.
Loomis
, and
P.
Papadopoulos
, “
Aerothermal analysis of the project Fire II afterbody flow
,”
J. Thermophys. Heat Transfer
17
,
240
(
2003
).
18.
M. J.
Wright
,
D.
Bose
, and
J.
Olejniczak
, “
Impact of flowfield-radiation coupling on aeroheating for Titan aerocapture
,”
J. Thermophys. Heat Transfer
19
,
17
(
2005
).
19.
S.
Dietrich
and
I. D.
Boyd
, “
Scalar and parallel optimized implementation of the direct simulation Monte Carlo method
,”
J. Comput. Phys.
126
,
328
(
1996
).
20.
Q.
Sun
,
C.
Cai
,
I. D.
Boyd
,
J. H.
Clemmons
, and
J. H.
Hecht
, “
Computational analysis of high-altitude ionization gauge flight measurements
,”
J. Spacecr. Rockets
43
,
186
(
2006
).
21.
A. B.
Murphy
and
C. J.
Arundelli
, “
Transport coefficients of argon, nitrogen, oxygen, argon-nitrogen, and argon-oxygen plasmas
,”
Plasma Chem. Plasma Process.
14
,
451
(
1994
).
22.
M. J.
Wright
,
D.
Bose
,
G. E.
Palmer
, and
E.
Levin
, “
Recommended collision integrals for transport property computations, Part 1: Air species
,”
AIAA J.
43
,
2558
(
2005
).
23.
W.
Wagner
, “
A convergence proof for Bird’s direct simulation Monte Carlo method for the Boltzmann equation
,”
J. Stat. Phys.
66
,
1011
(
1992
).
24.
T. I.
Gombosi
,
Gas Kinetic Theory
(
Cambridge University Press
,
1994
).
You do not currently have access to this content.