A model based on two-point closure theory of turbulence is proposed and applied to study the Reynolds number dependency of the scalar flux spectra in homogeneous shear flow with a cross-stream uniform scalar gradient. For the cross-stream scalar flux, in the inertial range the spectral behavior agrees with classical predictions and measurements. The streamwise scalar flux is found to be in good agreement with the results of atmospheric measurements. However, both the model results and the atmospheric measurements disagree with classical predictions. A detailed analysis of the different terms in the evolution equation for the streamwise scalar flux spectrum shows that nonlinear contributions are governing the inertial subrange of this spectrum and that these contributions are relatively more important than for the cross-stream flux. A new expression for the scalar flux spectra is proposed. It allows us to unify the description of the components in one single expression, leading to a classical K73 inertial range for the cross-stream component and to a new K239 scaling for the streamwise component that agrees better with atmospheric measurements than the K3 prediction of J. C. Wyngaard and O. R. Coté [Quart. J. R. Met. Soc.98, 590 (1972)].

1.
J. L.
Lumley
, “
Similarity and the turbulent energy spectrum
,”
Phys. Fluids
10
,
855
(
1967
).
2.
L.
Mydlarski
and
Z.
Warhaft
, “
Passive scalar statistics in high Peclet number grid turbulence
,”
J. Fluid Mech.
358
,
135
(
1998
).
3.
L.
Mydlarski
, “
Mixed velocity-passive scalar statistics in high-Reynolds-number turbulence
,”
J. Fluid Mech.
475
,
173
(
2003
).
4.
P. A.
O’Gorman
and
D. I.
Pullin
, “
Effect of Schmidt number on the velocity-scalar cospectrum in isotropic turbulence with a mean scalar gradient
,”
J. Fluid Mech.
532
,
111
(
2005
).
5.
W. J. T.
Bos
,
H.
Touil
, and
J.-P.
Bertoglio
, “
Reynolds number dependency of the scalar flux spectrum in isotropic turbulence with a uniform scalar gradient
,”
Phys. Fluids
17
,
125108
(
2005
).
6.
J. L.
Lumley
, “
The spectrum of nearly inertial turbulence in a stably stratified fluid
,”
J. Atmos. Sci.
21
,
99
(
1964
).
7.
J. C.
Wyngaard
and
O. R.
Coté
, “
Cospectral similarity in the atmospheric surface layer
,”
Q. J. R. Meteorol. Soc.
98
,
590
(
1972
).
8.
J. C.
Kaimal
,
J. C.
Wyngaard
,
Y.
Izumi
, and
O. R.
Coté
, “
Spectral characteristics of surface-layer turbulence
,”
Q. J. R. Meteorol. Soc.
98
,
563
(
1972
).
9.
B. A.
Kader
and
A. M.
Yaglom
, “
Spectra and correlation functions of surface layer atmospheric turbulence in unstable thermal stratification
,” in
Organized Structures and Turbulence in Fluid Mechanics
(
Kluwer
,
Grenoble
,
1989
), p.
387
.
10.
S. J.
Caughey
, “
Boundary-layer turbulence spectra in stable conditions
,”
Boundary-Layer Meteorol.
11
,
3
(
1977
).
11.
E. F.
Bradley
,
R. A.
Antonia
, and
A. J.
Chambers
, “
Turbulence Reynolds number and the turbulent kinetic energy balance in the atmospheric surface layer
,”
Boundary-Layer Meteorol.
21
,
183
(
1981
).
12.
M. M.
Rogers
,
P.
Moin
, and
W. C.
Reynolds
, “
The structure and modeling of the hydrodynamic and passive scalar fields in homogeneous turbulent shear flow
,” Technical Report, Department of Mechanical Engineering Report No. TF-25,
Stanford University
, Stanford,
1986
.
13.
G.
Brethouwer
, “
The effect of rotation on rapidly sheared homogeneous turbulence and passive scalar transport. Linear theory and direct numerical simulations
,”
J. Fluid Mech.
542
,
305
(
2005
).
14.
H.-J.
Kaltenbach
,
T.
Gerz
, and
U.
Schumann
, “
Large-eddy simulation of homogeneous turbulence and diffusion in stably stratified shear flow
,”
J. Fluid Mech.
280
,
1
(
1994
).
15.
S.
Herr
,
L. P.
Wang
, and
L. R.
Collins
, “
EDQNM model of a passive scalar with a uniform mean gradient
,”
Phys. Fluids
8
,
1588
(
1996
).
16.
J. P.
Bertoglio
, “
A model of three-dimensional transfer in non-isotropic homogeneous turbulence
,” in
Turbulent Shear Flows III
(
Springer-Verlag
,
Davis
,
1981
), p.
253
.
17.
C.
Cambon
,
D.
Jeandel
, and
J.
Mathieu
, “
Spectral modelling of homogeneous non-isotropic turbulence
,”
J. Fluid Mech.
104
,
247
(
1981
).
18.
H.
Touil
, “
Modélisation spectrale de la turbulence inhomogène anisotrope
,” Ph.D. thesis,
Ecole Centrale de Lyon
(
2002
).
19.
H.
Touil
,
S.
Parpais
, and
J. P.
Bertoglio
, “
A spectral closure applied to anisotropic inhomogeneous turbulence
,” in the
8th European Turbulence Conference
, Barcelona (
2000
).
20.
A. C.
Eringen
,
Continuum Physics
(
Academic
,
New York
,
1971
).
21.
R.
Schiestel
,
Modélisation et Simulation des Écoulements Turbulents
(
Hermes
,
New York
,
1993
).
22.
C.
Cambon
, “
Modélisation spectrale en turbulence homogène isotrope
,” Ph.D. thesis,
Université Claude Bernard de Lyon
(
1979
).
23.
T.
Clark
and
C.
Zemach
, “
A spectral model applied to homogeneous turbulence
,”
Phys. Fluids
7
,
1674
(
1995
).
24.
S.
Tavoularis
and
S.
Corrsin
, “
Experiments in nearly homogeneous turbulent shear flow with a uniform mean temperature gradient. Part 1
,”
J. Fluid Mech.
104
,
311
(
1981
).
25.
J. O.
Hinze
,
Turbulence
(
McGraw-Hill
,
New York
,
1975
).
26.
R. A.
Antonia
and
Y.
Zhu
, “
Inertial range behaviour of the longitudinal heat flux cospectrum
,”
Boundary-Layer Meteorol.
70
,
429
(
1994
).
27.
W. J. T.
Bos
,
H.
Touil
,
L.
Shao
, and
J.-P.
Bertoglio
, “
On the behaviour of the velocity-scalar cross correlation spectrum in the inertial range
,”
Phys. Fluids
16
,
3818
(
2004
).
You do not currently have access to this content.