The general motion of a pair of point vortices of arbitrary circulations in two-dimensional ideal shallow water near topography in the form of rectilinear step is found using Hamiltonian techniques. Paths are determined by the constants of motion: energy, linear impulse, and circulation. The behavior of vortex patches in the same geometry is computed using contour dynamics. Comparisons of point vortex and patch trajectories are found to be close provided the vortex patch centroids are sufficiently far away from the escarpment. For special values of the constants of motion, vortex pairs that propagate steadily parallel to the escarpment without deformation are found (that is, vortex pair equilibrium states) and exist even when the circulation of each vortex has the same sign.

1.
D. H.
Peregrine
, “
Surf zone currents
,”
Theor. Comput. Fluid Dyn.
10
,
295
(
1998
).
2.
H. T.
Özkan-Haller
and
J. T.
Kirby
, “
Nonlinear evolution of the longshore current: A comparison of observations and computations
,”
J. Geophys. Res.
104
,
25953
, DOI: 10.1029/1999JC900104 (
1999
).
3.
O.
Bühler
and
T. E.
Jacobson
, “
Wave-driven currents and vortex dynamics on barred beaches
,”
J. Fluid Mech.
449
,
313
(
2001
).
4.
G.
Richardson
, “
Vortex motion in shallow water with varying bottom topography and zero Froude number
,”
J. Fluid Mech.
411
,
351
(
2000
).
5.
E. R.
Johnson
and
N. R.
McDonald
, “
Surf zone vortices over stepped topography
,”
J. Fluid Mech.
511
,
265
(
2004
).
6.
E. R.
Johnson
,
A. K.
Hinds
, and
N. R.
McDonald
, “
Steadily translating vortices near step topography
,”
Phys. Fluids
17
,
056601
(
2005
).
7.
A. K.
Hinds
,
E. R.
Johnson
, and
N. R.
McDonald
, “
Vortex scattering by step topography
,”
J. Fluid Mech.
571
,
495
(
2007
).
8.
B.
Eckhardt
and
H.
Aref
, “
Integrable and chaotic motions of four vortices II. Collision dynamics of vortex pairs
,”
Philos. Trans. R. Soc. London, Ser. A
326
,
655
(
1988
).
9.
P. G.
Saffman
,
Vortex Dynamics
(
Cambrige University Press
,
Cambridge
,
1992
).
10.
A. E. H.
Love
, “
On the motion of paired vortices with a common axis
,”
Proc. London Math. Soc.
25
,
185
(
1894
).
11.
D. J.
Acheson
, “
Instability of vortex leap-frogging
,”
Eur. J. Phys.
21
,
269
(
2000
).
12.
H.
Yamada
and
T.
Matsui
, “
Preliminary study of mutual slip-through of a pair of vortices
,”
Phys. Fluids
21
,
292
(
1978
).
13.
E. A.
Overman
and
N. J.
Zabusky
, “
Coaxial scattering of Euler-equation translating V-states via contour dynamics
,”
J. Fluid Mech.
125
,
187
(
1982
).
14.
H.
Aref
and
M. A.
Stremler
, “
Four-vortex motion with zero total circulation and impulse
,”
Phys. Fluids
11
,
3704
(
1999
).
15.
D. G.
Dritschel
, “
Contour surgery: a topological reconnection scheme for extended integrations using contour dynamics
,”
J. Comput. Phys.
77
,
240
(
1988
).
16.
E. R.
Johnson
and
N. R.
McDonald
, “
The motion of a vortex near two circular cylinders
,”
Proc. R. Soc. London
460
,
939
(
2004
).
17.
H. M.
Wu
,
E. A.
Overman
, and
N. J.
Zabusky
, “
Steady-state solutions to the Euler equations in two dimensions: rotating and translating V-states with limiting cases. I. Numerical algorithms and results
,”
J. Comput. Phys.
77
,
53
(
1984
).
18.
N.
Hogg
and
H.
Stommel
, “
The heton, an elementary interaction between discrete baroclinic geostrophic vortices, and its implications concerning eddy heat-flow
,”
Proc. R. Soc. London, Ser. A
397
,
1
(
1985
).
19.
N.
Zabusky
and
J.
McWilliams
, “
A modulated point-vortex model for geostrophic, beta-plane dynamics
,”
Phys. Fluids
25
,
2175
(
1982
).
You do not currently have access to this content.