Numerical calculations have been carried out to investigate the physical properties of mantle plumes in highly viscous thermal convection depending on the Rayleigh number (Ra). The Boussinesq approximation was applied in a three-dimensional Cartesian domain filled with isoviscous, purely bottom-heated fluid with infinite Prandtl number. In order to monitor the dynamical behavior of plumes an automatic plume detecting routine was developed based on the temperature between the plume and its surroundings. It was established that as the convection becomes more vigorous with increasing Rayleigh number the average cross-sectional area of an individual plume decreases (Ra23), the vertical velocity in plumes increases (Ra23), while the average temperature in plumes is independent of Ra. It means that the volume and the heat transport in an individual plume is independent of the Rayleigh number. The number of plumes forming in the box increases (Ra13) which is in accordance with the scale analysis using the energy balance and the conservation of momentum. Furthermore, the Rayleigh number influences the temporal behavior of the average surface heat flow [Nusselt number, Nu0(t)] and the heat advected by plumes [Twp(t)]. The characteristic frequencies of Nu0(t) and Twp(t) increase by Ra23 in agreement with the rate of increase of the vertical velocity in plumes. The characteristic frequencies of Nu0(t) and Twp(t) are between the frequency corresponding to the time necessary for a plume to rise from the bottom to the top of the layer and the frequency of a whole convective cycle. The time series of Twp(t) contain larger amplitudes and higher frequencies than Nu0(t). It was assumed that the heat in the top thermal boundary layer (TBL) propagates by conduction and using Twp(t) as an input at the bottom of the top TBL the amplitude and the frequency of the heat flow series on the surface was calculated. It corresponds very well to the amplitude and the frequency of the observed Nu0(t). The correlation analysis between the time series of the surface Nusselt number and the heat advected by hot plumes showed that the time delay between the time series is equal to the time of the heat propagation by conduction through the TBL. The correlation between time series Twp(t) at different depths demonstrated well that the main heat transfer mechanism in plumes is advection.

1.
W. J.
Morgan
, “
Convection plumes in the lower mantle
,”
Nature (London)
230
,
42
(
1971
).
2.
J. T.
Wilson
, “
A possible origin of the Hawaiian Islands
,”
Can. J. Phys.
41
,
863
(
1963
).
3.
M.
Monnereau
and
A.
Cazenave
, “
Depth and geoid anomalies over oceanic hotspot swells: a global survey
,”
J. Geophys. Res.
95
,
15429
(
1990
).
4.
E.
Seidler
,
W. R.
Jacoby
, and
H.
Cavsak
, “
Hotspot distribution, gravity, mantle tomography: Evidence for plumes
,”
J. Geodyn.
27
,
585
(
1999
).
5.
C. J.
Wolfe
,
I.
Th. Bjarnason
,
J. C.
VanDecar
, and
S. C.
Salamon
, “
Seismic structure of the Iceland mantle plume
,”
Nature (London)
385
,
245
(
1997
).
6.
Y.
Ji
and
H.-C.
Nataf
, “
Detection of mantle plumes in the lower mantle by diffraction tomography: Hawaii
,”
Earth Planet. Sci. Lett.
159
,
99
(
1998
).
7.
H.
Bijwaard
,
W.
Spakman
, and
E. R.
Engdahl
, “
Closing the gap between regional and global travel time tomography
,”
J. Geophys. Res.
103
,
30055
, DOI: 10.1029/98JB02467 (
1998
).
8.
D.
Zhao
, “
Seismic structure and origin of hotspots and mantle plumes
,”
Earth Planet. Sci. Lett.
192
,
251
(
2001
).
9.
R.
Montelli
,
G.
Nolet
,
F. A.
Dahlen
,
G.
Masters
,
E. R.
Engdahl
, and
S.-H.
Hung
, “
Finite frequency tomography reveals a variety of plumes in the mantle
,”
Science
303
,
338
(
2004
).
10.
G.
Schubert
,
D. A.
Yuen
, and
D. L.
Turcotte
, “
Role of phase transition in a dynamic mantle
,”
Geophys. J. R. Astron. Soc.
42
,
705
(
1975
).
11.
Y.
Shen
,
S. C.
Solomon
,
I.
Th. Bjarnason
,
G.
Nolet
,
W. J.
Morgan
,
R. M.
Allen
,
K.
Vogfjörd
,
S.
Jakobsdóttir
,
R.
Stefánsson
,
B. R.
Julian
, and
G. R.
Foulger
, “
Seismic evidence for a tilted mantle plume and north-south mantle flow beneath Iceland
,”
Earth Planet. Sci. Lett.
197
,
261
(
2002
).
12.
F.
Niu
,
S. C.
Solomon
,
P. G.
Silver
,
D.
Suetsugu
, and
H.
Inoue
, “
Mantle transition-zone structure beneath the South Pacific Superswell and evidence for a mantle plume underlying the Society hotspot
,”
Earth Planet. Sci. Lett.
198
,
371
(
2002
).
13.
D.
Suetsugu
,
T.
Saita
,
H.
Takenaka
, and
F.
Niu
, “
Thickness of the mantle transition zone beneath the South Pacific as inferred from analyses of ScS reverberated and Ps converted waves
,”
Phys. Earth Planet. Inter.
146
,
35
(
2004
).
14.
X.
Li
,
R.
Kind
,
K.
Priestley
,
S. V.
Sobolev
,
F.
Tilmann
,
X.
Yuan
, and
M.
Weber
, “
Mapping the Hawaiian plume conduit with converted seismic waves
,”
Nature (London)
405
,
938
(
2000
).
15.
E.
Hooft
,
D. R.
Toomey
, and
S. C.
Solomon
, “
Anomalously thin transition zone beneath the Galápagos hotspot
,”
Earth Planet. Sci. Lett.
216
,
55
(
2006
).
16.
P. J.
Tackley
,
D. J.
Stevenson
,
G. A.
Glatzmaier
, and
G.
Schubert
, “
Effect of multiple phase transition in a three-dimensional spherical model of convection in the Earth’s mantle
,”
J. Geophys. Res.
99
,
15877
, DOI: 10.1029/94JB00853 (
1994
).
17.
H.-P.
Bunge
,
M. A.
Richards
, and
J. R.
Baumgardner
, “
A sensitivity study of three-dimensional spherical mantle convection at 108 Rayleigh number: Effects of depth-dependent viscosity, heating mode and an endothermic phase change
,”
J. Geophys. Res.
102
,
11991
, DOI: 10.1029/96JB03806 (
1997
).
18.
T.
Nakagawa
and
P. J.
Tackley
, “
Effects of thermochemical mantle convection on the thermal evolution of the Earth’s core
,”
Earth Planet. Sci. Lett.
220
,
107
(
2004
).
19.
C.
Sotin
and
S.
Labrosse
, “
Three-dimensional thermal convection in an iso-viscous, infinite Prandtl number fluid heated from within and from below: Applications to the transfer of heat through planetary mantles
,”
Phys. Earth Planet. Inter.
112
,
171
(
1999
).
20.
S.
Labrosse
, “
Hotspots, mantle plumes and core heat loss
,”
Earth Planet. Sci. Lett.
199
,
147
(
2002
).
21.
S.
Zhong
, “
Dynamics of thermal plumes in three-dimensional isoviscous thermal convection
,”
Geophys. J. Int.
162
,
289
(
2005
).
22.
G.
Schubert
,
D. L.
Turcotte
, and
P.
Olson
,
Mantle Convection in the Earth and Planets
(
Cambridge University Press
,
Cambridge
,
2001
).
23.
S.
Chandrasekhar
,
Hydrodynamic and Hydromagnetic Stability
(
Clarendon
,
Oxford
,
1961
).
24.
L.
Cserepes
,
M.
Rabinowicz
, and
C.
Rosemberg-Borot
, “
Three-dimensional infinite Prandtl number convection in one and two layers with implications for the Earth’s gravity field
,”
J. Geophys. Res.
93
,
12009
(
1988
).
25.
P. J.
Roache
,
Computational Fluid Dynamics
(
Hermosa
,
Albuquerque
,
1976
).
26.
D. W.
Peaceman
,
Fundamentals of Numerical Reservoir Simulation
(
Elsevier
,
New York
,
1977
).
27.
U.
Hansen
,
D. A.
Yuen
, and
A. V.
Malevsky
, “
Comparison of steady-state and strongly chaotic thermal convection at high Rayleigh number
,”
Phys. Rev. A
46
,
4742
(
1992
).
28.
D. L.
Turcotte
and
E. R.
Oxburgh
, “
Finite amplitude convective cells and continental drift
,”
J. Fluid Mech.
25
,
29
(
1967
).
29.
B.
Steinberger
, “
Plumes in a convecting mantle: Models and observations for individual hotspots
,”
J. Geophys. Res.
105
,
11127
, DOI: 10.1029/1999JB900398 (
2000
).
30.
B.
Süle
, “
The structure and the surface manifestation of mantle plumes in depth-dependent three-dimensional models
,”
Acta Geod. Geoph. Hung.
40
,
89
(
2005
).
31.
M.
Albers
and
U. R.
Christensen
, “
The excess temperature of plumes rising from the core-mantle boundary
,”
Geophys. Res. Lett.
23
,
3567
(
1996
).
32.
E. M.
Parmentier
and
C.
Sotin
, “
Three-dimensional numerical experiments on thermal convection in a very viscous fluid: Implications for the dynamics of a thermal boundary layer at high Rayleigh number
,”
Phys. Fluids
12
,
609
(
2000
).
33.
H. S.
Carslaw
and
J. C.
Jaeger
,
Conduction of Heat in Solids
(
Clarendon
,
Oxford
,
1959
).
34.
H.
Bijwaard
and
W.
Spakman
, “
Tomographic evidence for a narrow whole mantle plume below Iceland
,”
Earth Planet. Sci. Lett.
166
,
121
(
1999
).
35.
A.
Galsa
and
L.
Cserepes
, “
The number of hotspots in three-dimensional numerical models of mantle convection
,”
Acta Geod. Geoph. Hung.
38
,
103
(
2003
).
36.
J. P.
Tackley
, “
Effects of strongly variable viscosity on three-dimensional compressible convection in planetary mantles
,”
J. Geophys. Res.
101
,
3311
, DOI: 10.1029/95JB03211 (
1996
).
You do not currently have access to this content.