The appearance of sharp vorticity gradients in two-dimensional hydrodynamic turbulence and their influence on the turbulent spectra are considered. We have developed the analog of the vortex line representation as a transformation to the curvilinear system of coordinates moving together with the divorticity lines. Compressibility of this mapping can be considered as the main reason for the formation of the sharp vorticity gradients at high Reynolds numbers. For two-dimensional turbulence in the case of strong anisotropy the sharp vorticity gradients can generate spectra which fall off as k3 at large k, resembling the Kraichnan spectrum for the enstrophy cascade. For turbulence with weak anisotropy the k dependence of the spectrum due to the sharp gradients coincides with the Saffman spectrum, E(k)k4. We have compared the analytical predictions with direct numerical solutions of the two-dimensional Euler equation for decaying turbulence. We observe that the divorticity is reaching very high values and is distributed locally in space along piecewise straight lines, thus indicating strong anisotropy, and accordingly we find a spectrum close to the k3 spectrum.

1.
R. H.
Kraichnan
, “
Inertial ranges in 2D turbulence
,”
Phys. Fluids
11
,
1417
(
1967
).
2.
R. H.
Kraichnan
, “
Inertial range transfer in two- and three-dimensional turbulence
,”
J. Fluid Mech.
47
,
525
(
1971
);
R. H.
Kraichnan
, “
Kolmogorov's inertial-range theories
,”
J. Fluid Mech.
62
,
305
(
1974
).
3.
P. G.
Saffman
, “
On the spectrum and decay of random 2D vorticity distributions at large Reynolds number
,”
Stud. Appl. Math.
50
,
377
(
1971
).
4.
W.
Wolibner
, “
Un théorème sur l’existence du movement plan d’un fluide parfait, homogène, incompressible, pedant un temp infiniment long
,”
Math. Z.
37
,
698
(
1933
).
5.
T.
Kato
, “
On classical solutions of two-dimensional non-stationary Euler equation
,”
Arch. Ration. Mech. Anal.
25
,
189
(
1967
).
6.
V. I.
Yudovich
, “
Nonstationary flow of an ideal incompressible liquid
,”
Zh. Vychisl. Mat. Mat. Fiz.
3
,
1032
(
1963
)
V. I.
Yudovich
,[
J. Math. Numer. Phys. Math.
6
,
1032
(
1965
)];
V. I.
Yudovich
,“
On the loss of smoothness of the solutions of the Euler equations and the inherent instability of flows of an ideal fluid
,”
Chaos
10
,
705
(
2000
).
[PubMed]
7.
H. A.
Rose
and
P. L.
Sulem
, “
Fully developed turbulence and statistical mechanics
,”
J. Phys. (France)
39
,
441
(
1978
).
8.
C.
Sulem
and
P. L.
Sulem
, “
The well-posedness of two-dimensional ideal flow
,”
J. Mec. Theor. Appl.
Special Issue S1
,
217
(
1983
).
9.
O. A.
Ladyzhenskaya
,
The Mathematical Theory of Viscous Incompressible Flow
(
Gordon and Breach
,
New York
,
1969
).
10.
O. A.
Ladyzhenskaya
, “
Mathematical analysis of Navier-Stokes equations for incompressible liquids
,”
Annu. Rev. Fluid Mech.
7
,
249
(
1975
).
11.
U.
Frisch
,
T.
Matsumoto
, and
J.
Bec
, “
Singularities of Euler flows? Not out of the blue!
J. Stat. Phys.
113
,
761
(
2003
).
12.
T.
Matsumoto
,
J.
Bec
, and
U.
Frisch
, “
The analytic structure of 2D Euler flows at short times
,”
Fluid Dyn. Res.
36
,
221
(
2005
).
13.
J. C.
McWilliams
, “
The emergence of isolated coherent vortices in turbulent flow
,”
J. Fluid Mech.
146
,
21
(
1984
).
14.
S.
Kida
, “
Numerical simulations of two-dimensional turbulence with high-symmetry
,”
J. Phys. Soc. Jpn.
54
,
2840
(
1985
).
15.
M. E.
Brachet
,
M.
Meneguzzi
, and
P. L.
Sulem
, “
Small scale dynamics of high Reynolds number two-dimensional turbulence
,”
Phys. Rev. Lett.
57
,
683
(
1986
).
16.
R.
Benzi
,
S.
Patarnello
, and
P.
Santangelo
, “
On the statistical properties of two-dimensional decaying turbulence
,”
Europhys. Lett.
3
,
811
(
1987
).
17.
B.
Legras
,
B.
Santangelo
, and
R.
Benzi
, “
High resolution numerical experiments for forced of two-dimensional turbulence
,”
Europhys. Lett.
5
,
37
(
1988
);
B.
Santangelo
,
R.
Benzi
, and
B.
Legras
, “
The generation of vorticers in high-resolution two-dimensional decaying turbulence and the influence of initial conditions on the breaking of self-similarity
,”
Phys. Fluids A
1
,
1027
(
1989
).
18.
A. D.
Gilbert
, “
Spiral structures and spectra in two-dimensional turbulence
,”
J. Fluid Mech.
193
,
475
(
1988
).
19.
H. K.
Moffatt
, “
Spiral structures in turbulent flow
,” in
New Approaches and Concepts in Turbulence
, edited by
Th.
Dracos
and
A.
Tsinober
(
Birkhäuser
,
Basel
,
1993
), p.
121
.
20.
J. C.
Vassilicos
and
J. C. R.
Hunt
, “
Fractal dimensions and spectra of interfaces with applications to turbulence
,”
Proc. R. Soc. London, Ser. A
435
,
505
(
1991
).
21.
K.
Ohkitani
, “
Wave number space dynamics of enstrophy cascades in a forced two-dimensional turbulence
,”
Phys. Fluids A
3
,
1598
(
1991
).
22.
J.
Weiss
, “
The dynamics of enstrophy transfer in two-dimensional hydrodynamics
,”
Physica D
48
,
273
(
1991
).
23.
S.
Chen
,
R. E.
Ecke
,
G. L.
Eyink
,
X.
Wang
, and
Z.
Xiao
, “
Physical mechanism of the two-dimensional enstrophy cascade
,”
Phys. Rev. Lett.
91
,
214501
(
2003
).
24.
M.
Do-Khac
,
C.
Basdevant
,
V.
Perrier
, and
K.
Dang-Tranc
, “
Wavelet analysis of 2D turbulent fields
,”
Physica D
76
,
252
(
1994
).
25.
A. H.
Nielsen
,
X.
He
,
J. J.
Rasmussen
, and
T.
Bohr
, “
Vortex merging and spectral cascade in two-dimensional flows
,”
Phys. Fluids
8
,
2263
(
1996
).
26.
J. J.
Rasmussen
,
A. H.
Nielsen
, and
V.
Naulin
, “
Dynamics of vortex interaction in two-dimensional flows
,”
Phys. Scr.
98
,
29
(
2002
).
27.
N. K.-R.
Kevlahan
and
M.
Farge
, “
Vorticity filaments in two-dimensional turbulence: Creation, stability, and effect
,”
J. Fluid Mech.
346
,
49
(
1997
).
28.
D. G.
Dritschel
, “
Vortex properties of 2D turbulence
,”
Phys. Fluids A
5
,
984
(
1993
);
D. G.
Dritschel
,“
A general theory for two-dimensional vortex interactions
,”
J. Fluid Mech.
293
,
269
(
1995
).
29.
B.
Legras
and
D. G.
Dritschel
, “
Vortex stripping and the generation of high vorticity gradients in two-dimensional flows
,”
Appl. Sci. Res.
,
51
,
445
, (
1993
).
30.
E. A.
Kuznetsov
and
V. P.
Ruban
, “
Hamiltonian dynamics of vortex lines in hydrodynamic-type systems
,”
Pis'ma Zh. Eksp. Teor. Fiz.
67
,
1015
(
1998
)
E. A.
Kuznetsov
and
V. P.
Ruban
,[
JETP Lett.
,
67
,
1076
(
1998
)];
E. A.
Kuznetsov
and
V. P.
Ruban
,“
Hamiltonian dynamics of vortex and magnetic lines in hydrodynamic type systems
,”
Phys. Rev. E
61
,
831
(
2000
).
31.
E. A.
Kuznetsov
, “
Vortex line representation for flows of ideal and viscous fluids
,”
Pis'ma Zh. Eksp. Teor. Fiz.
76
,
406
(
2002
)
E. A.
Kuznetsov
,[
JETP Lett.
76
,
346
(
2002
)].
32.
E. A.
Kuznetsov
,
T.
Passot
, and
P. L.
Sulem
, “
Compressible dynamics of magnetic field lines for incompressible magnetohydrodynamic flows
,”
Phys. Plasmas
11
,
1410
(
2004
).
33.
Y.
Kimura
and
J. R.
Herring
, “
Gradient enhancement and filament ejection for a nonuniform elliptic vortex in two-dimensional turbulence
,”
J. Fluid Mech.
493
,
43
(
2001
).
34.
G. E.
Volovik
and
V. P.
Mineev
, “
Investigation of singularities in super fluid HE-3 and liquid-crystals by homotopic topology methods
,”
Zh. Eksp. Teor. Fiz.
72
,
2256
(
1977
)
G. E.
Volovik
and
V. P.
Mineev
,[
Sov. Phys. JETP
45
,
1186
(
1977
)].
35.
E. A.
Kuznetsov
and
V. P.
Ruban
, “
Collapse of vortex lines in hydrodynamics
,”
Zh. Eksp. Teor. Fiz.
118
,
853
(
2000
)
E. A.
Kuznetsov
and
V. P.
Ruban
,[
J. Exp. Theor. Phys.
91
,
775
(
2000
)].
36.
V. A.
Zheligovsky
,
E. A.
Kuznetsov
, and
O. M.
Podvigina
, “
Numerical modeling of collapse in ideal incompressible hydrodynamics
,”
Pis'ma Zh. Eksp. Teor. Fiz.
74
,
402
(
2001
)
V. A.
Zheligovsky
,
E. A.
Kuznetsov
, and
O. M.
Podvigina
,[
JETP Lett.
74
,
367
(
2001
)].
37.
E. A.
Kuznetsov
,
O. M.
Podvigina
, and
V. A.
Zheligovsky
, “
Numerical evidence of breaking of vortex lines in an ideal fluid
,” in
Fluid Mechanics and its Applications
, Vol.
71
, edited by
K.
Bajer
and
H. K.
Moffatt
(
Kluwer
,
Dordrecht
,
2003
), pp.
305
316
.
38.
G.
Falkovich
, “
Bottleneck phenomenon in developed turbulence
,”
Phys. Fluids
6
,
1411
(
1994
).
39.
J. R.
Chasnov
, “
On the decay of two-dimensional homogeneous turbulence
,”
Phys. Fluids
9
,
171
(
1997
).
40.
B.
Dubrulle
,
J.-P.
Laval
,
S. V.
Nazarenko
, and
O.
Zaboronski
, “
A model for rapid stochastic distortions of small-scale turbulence
,”
J. Fluid Mech.
520
,
1
(
2004
).
41.
S. V.
Nazarenko
and
J.-P.
Laval
, “
Non-local two-dimensional turbulence and Batchelor’s regime for passive scalars
,”
J. Fluid Mech.
408
,
301
(
2000
).
42.
E. A.
Kuznetsov
, “
Turbulent spectra generated by singularities
,”
Pis'ma Zh. Eksp. Teor. Fiz.
80
,
92
(
2004
)
E. A.
Kuznetsov
,[
JETP Lett.
80
,
83
(
2004
)].
You do not currently have access to this content.