It is shown that there is an overlooked mechanism whereby some kinds of dissipation can enhance the Benjamin-Feir instability of water waves. This observation is new, and although it is counterintuitive, it is due to the fact that the Benjamin-Feir instability involves the collision of modes with opposite energy sign (relative to the carrier wave), and it is the negative energy perturbations that are enhanced.
REFERENCES
1.
O. M.
Phillips
, “On the dynamics of unsteady gravity waves of finite amplitude. I. The elementary interactions
,” J. Fluid Mech.
9
, 193
(1960
).2.
K.
Hasselmann
, “On the non-linear energy transfer in a gravity-wave spectrum. Part 1. General theory
,” J. Fluid Mech.
12
, 481
(1962
).3.
M. J.
Lighthill
, “Contributions to the theory of waves in nonlinear dispersive systems
,” J. Inst. Math. Appl.
1
, 269
(1965
).4.
G. B.
Whitham
, “A general approach to linear and nonlinear dispersive waves using a Lagrangian
,” J. Fluid Mech.
22
, 273
(1965
).5.
T. B.
Benjamin
and J. E.
Feir
, “The disintegration of wavetrains in deep water. Part 1
,” J. Fluid Mech.
27
, 417
(1967
).6.
T. B.
Benjamin
, “Instability of periodic wavetrains in nonlinear dispersive systems
,” Proc. R. Soc. London, Ser. A
299
, 59
(1967
).7.
J. C. R.
Hunt
, “Thomas Brooke Benjamin 15 April 1929–16 August 1995
,” Biogr. Mem. Fellows R. Soc.
49
, 39
(2003
).8.
P. J.
Blennerhassett
, “On the generation of waves by wind
,” Philos. Trans. R. Soc. London, Ser. A
298
, 451
(1980
).9.
L. F.
Bliven
, N. E.
Huang
, and S. R.
Long
, “Experimental study of the influence of wind on Benjamin-Feir sideband instability
,” J. Fluid Mech.
162
, 237
(1986
).10.
A.
Davey
, “The propagation of a weak nonlinear wave
,” J. Fluid Mech.
53
, 769
(1972
).11.
A. L.
Fabrikant
, “Nonlinear dynamics of wave packets in a dissipative medium
,” Sov. Phys. JETP
59
, 274
(1984
).12.
H.
Segur
, D.
Henderson
, J.
Carter
, J.
Hammack
, C.-M.
Li
, D.
Pheiff
, and K.
Socha
, “Stabilizing the Benjamin-Feir instability
,” J. Fluid Mech.
539
, 229
(2005
).13.
G.
Wu
, Y.
Liu
, and D. K. P.
Yue
, “A note on stabilizing the Benjamin-Feir instability
,” J. Fluid Mech.
556
, 45
(2006
).14.
T. J.
Bridges
and A.
Mielke
, “A proof of the Benjamin-Feir instability
,” Arch. Ration. Mech. Anal.
133
, 145
(1995
).15.
L. A.
Ostrovskiĭ
, “Propagation of wave packets and space-time self-focusing in a nonlinear medium
,” Sov. Phys. JETP
24
, 797
(1967
).16.
V. E.
Zakharov
, “Stability of periodic waves of finite amplitude on the surface of a deep fluid
,” J. Appl. Mech. Tech. Phys.
9
, 190
(1968
).17.
R. A.
Cairns
, “The role of negative energy waves in some instabilities of parallel flows
,” J. Fluid Mech.
92
, 1
(1979
).18.
A. D. D.
Craik
, Wave Interactions and Fluid Flows
(Cambridge University Press
, Cambridge
, 1988
).19.
R. S.
MacKay
, “Movement of eigenvalues of Hamiltonian equilibria under non-Hamiltonian perturbation
,” Phys. Lett. A
155
, 266
(1991
).20.
L. A.
Ostrovskiĭ
, S. A.
Rybak
, and L. Sh.
Tsimring
, “Negative energy waves in hydrodynamics
,” Sov. Phys. Usp.
29
, 1040
(1986
).21.
A. L.
Fabrikant
and Yu. A.
Stepanyants
, Propagation of Waves in Shear Flows
(World Scientific
, Singapore
, 1998
).22.
T. B.
Benjamin
, “Classification of unstable disturbances in flexible surfaces bounding inviscid flows
,” J. Fluid Mech.
16
, 436
(1963
).23.
M. T.
Landahl
, “On the stability of a laminar incompressible boundary layer over a flexible surface
,” J. Fluid Mech.
13
, 609
(1962
).24.
N.
Peake
, “Nonlinear stability of fluid-loaded elastic plate with mean flow
,” J. Fluid Mech.
434
, 101
(2001
).25.
G.
Derks
and T.
Ratiu
, “Attracting curves on families of stationary solutions in two-dimensional Navier-Stokes and reduced magnetohydrodynamics
,” Proc. R. Soc. London, Ser. A
454
, 1407
(2002
);G.
Derks
and T.
Ratiu
,“Unstable manifolds of relative equilibria in Hamiltonian systems with dissipation
,” Nonlinearity
15
, 531
(1998
).26.
W.
Craig
, C.
Sulem
, and P. L.
Sulem
, “Nonlinear modulation of gravity waves: a rigorous approach
,” Nonlinearity
5
, 497
(1992
).27.
M. C.
Longuet-Higgins
, “Integral properties of periodic gravity waves of finite amplitude
,” Proc. R. Soc. London, Ser. A
342
, 157
(1975
).28.
D.
Dutykh
and F.
Dias
, “Viscous potential free-surface flows in a fluid layer of finite depth
,” C. R. Acad. Sci., Ser. I: Math.
345
, 113
(2007
).29.
R. S.
MacKay
and P. G.
Saffman
, “Stability of water waves
,” Proc. R. Soc. London, Ser. A
406
, 115
(1986
).30.
T. J.
Bridges
, “A geometric formulation of the conservation of wave action and its implications for signature and the classification of instabilities
,” Proc. R. Soc. London, Ser. A
453
, 1365
(1997
).© 2007 American Institute of Physics.
2007
American Institute of Physics
You do not currently have access to this content.