It is shown that there is an overlooked mechanism whereby some kinds of dissipation can enhance the Benjamin-Feir instability of water waves. This observation is new, and although it is counterintuitive, it is due to the fact that the Benjamin-Feir instability involves the collision of modes with opposite energy sign (relative to the carrier wave), and it is the negative energy perturbations that are enhanced.

1.
O. M.
Phillips
, “
On the dynamics of unsteady gravity waves of finite amplitude. I. The elementary interactions
,”
J. Fluid Mech.
9
,
193
(
1960
).
2.
K.
Hasselmann
, “
On the non-linear energy transfer in a gravity-wave spectrum. Part 1. General theory
,”
J. Fluid Mech.
12
,
481
(
1962
).
3.
M. J.
Lighthill
, “
Contributions to the theory of waves in nonlinear dispersive systems
,”
J. Inst. Math. Appl.
1
,
269
(
1965
).
4.
G. B.
Whitham
, “
A general approach to linear and nonlinear dispersive waves using a Lagrangian
,”
J. Fluid Mech.
22
,
273
(
1965
).
5.
T. B.
Benjamin
and
J. E.
Feir
, “
The disintegration of wavetrains in deep water. Part 1
,”
J. Fluid Mech.
27
,
417
(
1967
).
6.
T. B.
Benjamin
, “
Instability of periodic wavetrains in nonlinear dispersive systems
,”
Proc. R. Soc. London, Ser. A
299
,
59
(
1967
).
7.
J. C. R.
Hunt
, “
Thomas Brooke Benjamin 15 April 1929–16 August 1995
,”
Biogr. Mem. Fellows R. Soc.
49
,
39
(
2003
).
8.
P. J.
Blennerhassett
, “
On the generation of waves by wind
,”
Philos. Trans. R. Soc. London, Ser. A
298
,
451
(
1980
).
9.
L. F.
Bliven
,
N. E.
Huang
, and
S. R.
Long
, “
Experimental study of the influence of wind on Benjamin-Feir sideband instability
,”
J. Fluid Mech.
162
,
237
(
1986
).
10.
A.
Davey
, “
The propagation of a weak nonlinear wave
,”
J. Fluid Mech.
53
,
769
(
1972
).
11.
A. L.
Fabrikant
, “
Nonlinear dynamics of wave packets in a dissipative medium
,”
Sov. Phys. JETP
59
,
274
(
1984
).
12.
H.
Segur
,
D.
Henderson
,
J.
Carter
,
J.
Hammack
,
C.-M.
Li
,
D.
Pheiff
, and
K.
Socha
, “
Stabilizing the Benjamin-Feir instability
,”
J. Fluid Mech.
539
,
229
(
2005
).
13.
G.
Wu
,
Y.
Liu
, and
D. K. P.
Yue
, “
A note on stabilizing the Benjamin-Feir instability
,”
J. Fluid Mech.
556
,
45
(
2006
).
14.
T. J.
Bridges
and
A.
Mielke
, “
A proof of the Benjamin-Feir instability
,”
Arch. Ration. Mech. Anal.
133
,
145
(
1995
).
15.
L. A.
Ostrovskiĭ
, “
Propagation of wave packets and space-time self-focusing in a nonlinear medium
,”
Sov. Phys. JETP
24
,
797
(
1967
).
16.
V. E.
Zakharov
, “
Stability of periodic waves of finite amplitude on the surface of a deep fluid
,”
J. Appl. Mech. Tech. Phys.
9
,
190
(
1968
).
17.
R. A.
Cairns
, “
The role of negative energy waves in some instabilities of parallel flows
,”
J. Fluid Mech.
92
,
1
(
1979
).
18.
A. D. D.
Craik
,
Wave Interactions and Fluid Flows
(
Cambridge University Press
,
Cambridge
,
1988
).
19.
R. S.
MacKay
, “
Movement of eigenvalues of Hamiltonian equilibria under non-Hamiltonian perturbation
,”
Phys. Lett. A
155
,
266
(
1991
).
20.
L. A.
Ostrovskiĭ
,
S. A.
Rybak
, and
L. Sh.
Tsimring
, “
Negative energy waves in hydrodynamics
,”
Sov. Phys. Usp.
29
,
1040
(
1986
).
21.
A. L.
Fabrikant
and
Yu. A.
Stepanyants
,
Propagation of Waves in Shear Flows
(
World Scientific
,
Singapore
,
1998
).
22.
T. B.
Benjamin
, “
Classification of unstable disturbances in flexible surfaces bounding inviscid flows
,”
J. Fluid Mech.
16
,
436
(
1963
).
23.
M. T.
Landahl
, “
On the stability of a laminar incompressible boundary layer over a flexible surface
,”
J. Fluid Mech.
13
,
609
(
1962
).
24.
N.
Peake
, “
Nonlinear stability of fluid-loaded elastic plate with mean flow
,”
J. Fluid Mech.
434
,
101
(
2001
).
25.
G.
Derks
and
T.
Ratiu
, “
Attracting curves on families of stationary solutions in two-dimensional Navier-Stokes and reduced magnetohydrodynamics
,”
Proc. R. Soc. London, Ser. A
454
,
1407
(
2002
);
G.
Derks
and
T.
Ratiu
,“
Unstable manifolds of relative equilibria in Hamiltonian systems with dissipation
,”
Nonlinearity
15
,
531
(
1998
).
26.
W.
Craig
,
C.
Sulem
, and
P. L.
Sulem
, “
Nonlinear modulation of gravity waves: a rigorous approach
,”
Nonlinearity
5
,
497
(
1992
).
27.
M. C.
Longuet-Higgins
, “
Integral properties of periodic gravity waves of finite amplitude
,”
Proc. R. Soc. London, Ser. A
342
,
157
(
1975
).
28.
D.
Dutykh
and
F.
Dias
, “
Viscous potential free-surface flows in a fluid layer of finite depth
,”
C. R. Acad. Sci., Ser. I: Math.
345
,
113
(
2007
).
29.
R. S.
MacKay
and
P. G.
Saffman
, “
Stability of water waves
,”
Proc. R. Soc. London, Ser. A
406
,
115
(
1986
).
30.
T. J.
Bridges
, “
A geometric formulation of the conservation of wave action and its implications for signature and the classification of instabilities
,”
Proc. R. Soc. London, Ser. A
453
,
1365
(
1997
).
You do not currently have access to this content.