Motivated by the intriguing motility of spirochetes (helically shaped bacteria that screw through viscous fluids due to the action of internal periplasmic flagella), we examine the fundamental fluid dynamics of superhelices translating and rotating in a Stokes fluid. A superhelical structure may be thought of as a helix whose axial centerline is not straight, but also a helix. We examine the particular case in which these two superimposed helices have different handedness, and employ a combination of experimental, analytic, and computational methods to determine the rotational velocity of superhelical bodies being towed through a very viscous fluid. We find that the direction and rate of the rotation of the body is a result of competition between the two superimposed helices; for small axial helix amplitude, the body dynamics is controlled by the short-pitched helix, while there is a crossover at larger amplitude to control by the axial helix. We find far better, and excellent, agreement of our experimental results with numerical computations based upon the method of Regularized Stokeslets than upon the predictions of classical resistive force theory.

1.
G. I.
Taylor
, “
The action of waving cylindrical tails in propelling microscopic organisms
,”
Proc. R. Soc. London, Ser. A
211
,
225
(
1952
).
2.
H. C.
Berg
,“
Bacteria swim by rotating their flagellar filaments
,”
Nature
245
,
380
(
1973
).
3.
J.
Lighthill
, “
Flagellar hydrodynamics
,”
SIAM Rev.
18
,
161
(
1976
).
4.
D.
Brown
and
H. C.
Berg
, “
Temporal stimulation of chemotaxis in Escherichia coli
,”
Proc. Natl. Acad. Sci. U.S.A.
71
,
1388
(
1974
).
5.
R. M.
MacNab
and
D. E.
Koshland
, “
The gradient-sensing mechanism in bacterial chemotaxis
,”
Proc. Natl. Acad. Sci. U.S.A.
69
,
2509
(
1972
).
6.
E.
Purcell
, “
The efficiency of propulsion by a rotating flagellum
,”
Proc. Natl. Acad. Sci. U.S.A.
94
,
11307
(
1997
).
7.
M.
Kim
,
J.
Bird
,
A.
Van Parys
,
K.
Breuer
, and
T.
Powers
, “
A macroscopic scale model of bacterial flagellar bundling
,”
Proc. Natl. Acad. Sci. U.S.A.
100
,
15481
(
2003
).
8.
H.
Flores
,
E.
Lobaton
,
S.
Mendez-Diez
,
S.
Tlupova
, and
R.
Cortez
, “
A study of bacterial flagellar bundling
,”
Bull. Math. Biol.
67
,
137
(
2005
).
9.
N. W.
Charon
,
G. R.
Daughtry
,
R. S.
McCuskey
, and
G. N.
Franz
, “
Microcinematographic analysis of Tethered Leptospira illini
,”
J. Bacteriol.
160
,
1067
(
1984
).
10.
S.
Goldstein
and
N.
Charon
, “
Multiple-exposure photographic analysis of a motile spirochete
,”
Proc. Natl. Acad. Sci. U.S.A.
87
,
4895
(
1990
).
11.
R.
Cortez
,
L.
Fauci
, and
A.
Medovikov
, “
The method of Regularized Stokeslets in three dimensions: Analysis, validation, and application to helical swimming
,”
Phys. Fluids
17
,
031504
(
2005
).
12.
R.
Cortez
, “
The method of Regularized Stokeslets
,”
SIAM J. Sci. Comput. (USA)
23
,
1204
(
2001
).
13.
S.
Jung
,
S. E.
Spagnolie
,
K.
Prikh
,
M.
Shelley
, and
A.-K.
Tornberg
, “
Periodic sedimentation in a Stokesian fluid
,”
Phys. Rev. E
74
,
035302
(R) (
2006
).
14.
C.
Pozrikidis
,
Boundary Integral and Singularity Methods for Linearized Viscous Flow
(
Cambridge University Press
,
Cambridge
,
1992
).
15.
G. J.
Hancock
, “
The self-propulsion of microscopic organisms through liquids
,”
Proc. R. Soc. London, Ser. A
217
,
96
(
1953
).
16.
J.
Gray
and
G. J.
Hancock
, “
The propulsion of sea-urchin spermatozoa
,”
J. Exp. Biol.
32
,
802
(
1955
).
You do not currently have access to this content.