The coalescence of two equal-sized deformable drops in an axisymmetric flow is studied, using a boundary-integral method. An adaptive mesh refinement method is used to resolve the local small-scale dynamics in the gap and to retain a reasonable speed of computation. The thin film dynamics is successfully simulated, with sufficient stability and accuracy, up to a film thickness of O(104) times the undeformed drop radius, for a range of capillary numbers, Ca, from O(104101) and viscosity ratios from O(0.110). The results are compared with experimental results from our earlier studies as well as the simple scaling theory for film drainage. The collisions for time-independent flow simulating head-on collisions in the experimental studies show two distinctively different regimes. At lower capillary numbers, the interfaces of the thin film between the colliding drops remain almost spherical up to the point of film rupture, and the dimensionless drainage time scales as tdGCa. At higher capillary numbers, the film becomes dimpled at an early stage of the collision process, and the rate of the film drainage significantly slows down after the dimple is fully formed. In this case, the drainage time scales approximately as tdGCa43. The simulation, using a Hamaker constant with a fixed value calculated via Lifshitz theory, qualitatively agrees with the experimental results for the higher capillary numbers but not for the lower capillary numbers. The critical conditions for head-on collisions are also examined when the internal circulation within the drop, caused by the external flow, arrests the film drainage. Collisions in a time-dependent flow are also examined to simulate glancing collisions. Although the simulations predict many aspects of the experimental results, the results are quantitatively accurate, in comparison to the experimental data, only for the lowest viscosity ratio of 0.19. The interfaces of the thin film locally bulge outward when the drops are being pulled apart due to the suction pressure. This local deformation causes a local minimum in the film thickness. At the larger offsets, the coalescence angle continuously increases with Ca up to the separation angle (θ=55°58°), for Ca<Cac. At smaller offsets, however, the local deformation for θ>45° cannot induce film rupture, even though coalescence is observed experimentally for the higher viscosity ratios.

1.
G. I.
Taylor
, “
The viscosity of a fluid containing small drops of another fluid
,”
Proc. R. Soc. London, Ser. A
138
,
41
(
1932
).
2.
G. I.
Taylor
, “
The formation of emulsions in definable fields of flow
,”
Proc. R. Soc. London, Ser. A
146
,
501
(
1934
).
3.
G. K.
Youngren
and
A.
Acrivos
, “
Shape of a gas bubble in a viscous extensional flow
,”
J. Fluid Mech.
76
,
433
(
1976
).
4.
J. M.
Rallison
and
A.
Acrivos
, “
Numerical study of deformation and burst of a viscous drop in an extensional flow
,”
J. Fluid Mech.
89
,
191
(
1978
).
5.
H. A.
Stone
, “
Dynamics of drop deformation and breakup in viscous fluids
,”
Annu. Rev. Fluid Mech.
26
,
65
(
1994
).
6.
S.
Guido
and
M.
Simeone
, “
Binary collision of drops in simple shear flow by computer—assisted video optical microscopy
,”
J. Fluid Mech.
357
,
1
(
1998
).
7.
D. C.
Tretheway
,
M.
Muraoka
, and
L. G.
Leal
, “
Experimental trajectories of two drops in planar extensional flow
,”
Phys. Fluids
11
,
971
(
1999
).
8.
Y. T.
Hu
,
D. J.
Pine
, and
L. G.
Leal
, “
Drop deformation, breakup, and coalescence with compatibilizer
,”
Phys. Fluids
12
,
484
(
2000
).
9.
H.
Yang
,
C. C.
Park
,
Y. T.
Hu
, and
L. G.
Leal
, “
The coalescence of two equal-sized drops in a two-dimensional linear flow
,”
Phys. Fluids
13
,
1087
(
2001
).
10.
J. W.
Ha
,
Y.
Yoon
, and
L. G.
Leal
, “
The effect of compatibilizer on the coalescence of two drops in flow
,”
Phys. Fluids
15
,
849
(
2003
).
11.
Y.
Yoon
,
M.
Borrell
,
C. C.
Park
, and
L. G.
Leal
, “
Viscosity ratio effects on the coalescence of two equal-sized drops in a two-dimensional linear flow
,”
J. Fluid Mech.
525
,
355
(
2005
).
12.
M.
Borrell
,
Y.
Yoon
, and
L. G.
Leal
, “
Experimental analysis of the coalescence process via head-on collisions in a time-dependent flow
,”
Phys. Fluids
16
,
3945
(
2004
).
13.
S. G.
Yiantsios
and
R. H.
Davis
, “
Close approach and deformation of 2 viscous drops due to gravity and Van der Waals forces
,”
J. Colloid Interface Sci.
144
,
412
(
1991
).
14.
S.
Abid
and
A. K.
Chesters
, “
The drainage and rupture of partially-mobile films between colliding drops at constant approach velocity
,”
Int. J. Multiphase Flow
20
,
613
(
1994
).
15.
M. A.
Rother
,
A. Z.
Zinchenko
, and
R. H.
Davis
, “
Buoyancy-driven coalescence of slightly deformable drops
,”
J. Fluid Mech.
346
,
117
(
1997
).
16.
A. K.
Chesters
and
I. B.
Bazhlekov
, “
Effect of insoluble surfactants on drainage and rupture of a film between drops interacting under a constant force
,”
J. Colloid Interface Sci.
230
,
229
(
2000
).
17.
I. B.
Bazhlekov
,
A. K.
Chesters
, and
F. N.
van de Vosse
, “
The effect of the dispersed to continuous-phase viscosity ratio on film drainage between interacting drops
,”
Int. J. Multiphase Flow
26
,
445
(
2000
).
18.
F.
Baldessari
and
L. G.
Leal
, “
Effect of overall drop deformation on flow-induced coalescence at low capillary numbers
,”
Phys. Fluids
18
,
013602
(
2006
).
19.
V.
Cristini
,
J.
Blawzdziewicz
, and
M.
Loewenberg
, “
An adaptive mesh algorithm for evolving surfaces: Simulations of drop breakup and coalescence
,”
J. Comput. Phys.
168
,
445
(
2001
).
20.
M. B.
Nemer
,
X.
Chan
,
D. H.
Papadopoulos
,
J.
Blawzdziewicz
, and
M.
Loewenberg
, “
Hindered and enhanced coalescence of drops in Stokes flows
,”
Phys. Rev. Lett.
92
,
114501
(
2004
).
21.
M.
Loewenberg
and
E. J.
Hinch
, “
Numerical simulation of a concentrated emulsion in shear flow
,”
J. Fluid Mech.
321
,
395
(
1996
).
22.
M.
Loewenberg
and
E. J.
Hinch
, “
Collision of two deformable drops in shear flow
,”
J. Fluid Mech.
338
,
299
(
1997
).
23.
A. Z.
Zinchenko
,
M. A.
Rother
, and
R. H.
Davis
, “
A novel boundary-integral algorithm for viscous interaction of deformable drops
,”
Phys. Fluids
9
,
1493
(
1997
).
24.
M. A.
Rother
and
R. H.
Davis
, “
The effect of slight deformation on droplet coalescence in linear flows
,”
Phys. Fluids
13
,
1178
(
2001
).
25.
A. K.
Chesters
, “
The modeling of coalescence processes in fluid liquid dispersions: A review of current understanding
,”
Chem. Eng. Res. Des.
69
,
259
(
1991
).
26.
R. H.
Davis
, “
Buoyancy-driven viscous interaction of a rising drop with a smaller trailing drop
,”
Phys. Fluids
11
,
1016
(
1999
).
27.
C.
Pozrikidis
,
Boundary Integral and Singularity Methods for Linearized Viscous Flow
,
Cambridge Texts in Applied Mathematics
(
Cambridge University Press
,
New York
,
1992
).
28.
W. B.
Russel
,
D. A.
Saville
, and
W. R.
Schowalter
,
Colloidal Dispersions
(
Cambridge University Press
,
Cambridge
,
1989
).
29.
S.
Kim
and
S.
Karilla
,
Microhydrodynamics: Principles and Selected Applications
(
Butterworth-Heinemann
,
Boston
,
1991
).
30.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions
(
Dover
,
New York
,
1972
).
31.
S. H.
Lee
and
L. G.
Leal
, “
The motion of a sphere in the presence of a deformable interface. 2. A numerical study of the translation of a sphere normal to an interface
,”
J. Colloid Interface Sci.
87
,
81
(
1982
).
32.
T. Y.
Hou
,
J. S.
Lowengrub
, and
M. J.
Shelley
, “
Removing the stiffness from interfacial flow with surface-tension
,”
J. Comput. Phys.
114
,
312
(
1994
).
33.
T. Y.
Hou
,
J. S.
Lowengrub
, and
M. J.
Shelley
, “
The long-time motion of vortex sheets with surface tension
,”
Phys. Fluids
9
,
1933
(
1997
).
34.
T. Y.
Hou
,
J. S.
Lowengrub
, and
M. J.
Shelley
, “
Boundary integral methods for multicomponent fluids and multiphase materials
,”
J. Comput. Phys.
169
,
302
(
2001
).
35.
H. D.
Ceniceros
and
T. Y.
Hou
, “
Convergence of a non-stiff boundary integral method for interfacial flows with surface tension
,”
Math. Comput.
67
,
137
(
1998
).
36.
F.
Baldessari
, “
Theoretical studies of flow induced coalescence
,” in
Chemical Engineering
(
University of California
,
Santa Barbara
,
2004
).
37.
J. M.
Rallison
, “
A numerical study of the deformation and burst of a viscous drop in general shear flows
,”
J. Fluid Mech.
109
,
465
(
1981
).
38.
M.
Frigo
and
S. G.
Johnson
, “
The design and implementation of FFTW3
,”
Proc. IEEE
93
,
216
(
2005
).
39.
J.
Israelachvili
,
Intermolecular and Surface Forces
, 2nd ed. (
Academic
,
San Diego
,
1991
).
40.
C. C.
Park
,
F.
Baldessari
, and
L. G.
Leal
, “
Study of molecular weight effects on coalescence: Interface slip layer
,”
J. Rheol.
47
,
911
(
2003
).
41.
G. K.
Batchelor
and
J. T.
Green
, “
Hydrodynamic interaction of 2 small freely-moving spheres in a linear flow field
,”
J. Fluid Mech.
56
,
375
(
1972
).
42.
H.
Wang
,
A. Z.
Zinchenko
, and
R. H.
Davis
, “
The collision rate of small drops in linear flow-fields
,”
J. Fluid Mech.
265
,
161
(
1994
).
43.
E.
Helfand
and
Y.
Tagami
, “
Theory of interface between immiscible polymers
,”
J. Polym. Sci., Part B: Polym. Lett.
9
,
741
(
1971
).
44.
P.
Perrin
and
R. E.
Prudhomme
, “
Saxs measurements of interfacial thickness in amorphous polymer blends containing a diblock copolymer
,”
Macromolecules
27
,
1852
(
1994
).
45.
G. D.
Merfeld
,
A.
Karim
,
B.
Majumdar
,
S. K.
Satija
, and
D. R.
Paul
, “
Interfacial thickness in bilayers of poly (phenylene oxide) and styrenic copolymers
,”
J. Polym. Sci., Part B: Polym. Phys.
36
,
3115
(
1998
).
46.
C.
Maldarelli
and
R. K.
Jain
, “
The linear, hydrodynamic stability of an interfacially perturbed, transversely isotropic, thin, planar viscoelastic film. 1. General formulation and a derivation of the dispersion-equation
,”
J. Colloid Interface Sci.
90
,
233
(
1982
).
47.
P. A.
Kralchevsky
and
I. B.
Ivanov
, “
Micromechanical description of curved interfaces, thin-films, and membranes. 2. Film surface tensions, disjoining pressure and interfacial stress balances
,”
J. Colloid Interface Sci.
137
,
234
(
1990
).
You do not currently have access to this content.