The mechanisms of droplet formation that take place during vibration-induced drop atomization are investigated experimentally. Droplet ejection results from the breakup of transient liquid spikes that form following the localized collapse of free-surface waves. Breakup typically begins with capillary pinch-off of a droplet from the tip of the spike and can be followed by additional pinch-offs of satellite droplets if the corresponding capillary number is sufficiently small (e.g., in low-viscosity liquids). If the capillary number is increased (e.g., in viscous liquids), breakup first occurs near the base of the spike, with or without subsequent breakup of the detached, thread-like spike. The formation of these detached threads is governed by a breakup mechanism that is separated from the tip-dominated capillary pinch-off mechanism by an order of magnitude in terms of dimensionless driving frequency f*. The dependence of breakup time and unbroken spike length on fluid and driving parameters is established over a broad range of dimensionless driving frequencies (103<f*<1). It is also shown that the droplet-ejection acceleration threshold âc of low-viscosity liquids depends on the dimensionless drop diameter d̂. Moreover, in the limit d̂20, the droplet-ejection threshold becomes independent of d̂(âc4). This limit state is described by a scaling equivalent to that of Goodridge, Shi, and Lathrop [Phys. Rev. Lett.76, 1824 (1996)] derived for the onset of droplet ejection from Faraday waves. It is shown in the present study that the acceleration threshold in this limit scales like acf43(σρ)13.

1.
H.
Rodot
,
C.
Bisch
, and
A.
Lasek
, “
Zero-gravity simulation of liquids in contact with a solid surface
,”
Acta Astronaut.
6
,
1083
(
1979
).
2.
E. D.
Wilkes
and
O. A.
Basaran
, “
Drop ejection from an oscillating rod
,” in
Proceedings of the 4th Microgravity Fluid Physics and Transport Phenomena Conference
, edited by
B. S.
Singh
, NASA/CP-1999-208526,
1999
, p.
540
.
3.
This unpublished work by
K.
Range
,
A.
Glezer
, and
M. K.
Smith
considered the onset of droplet ejection and the breakup mechanisms that govern a low-mode excitation of a forced sessile drop. They found that a single-ejection event is generated by the collapse of a crater-like depression and concluded that the droplet-ejection acceleration threshold scales as acω1.04, is independent of viscosity for low-viscosity liquids, and independent of the surface tension for high-viscosity liquids.
4.
C. L.
Goodridge
,
W. T.
Shi
, and
D. P.
Lathrop
, “
Threshold dynamics of singular gravity-capillary waves
,”
Phys. Rev. Lett.
76
,
1824
(
1996
).
5.
C. L.
Goodridge
,
W. T.
Shi
,
H. G. E.
Hentschel
, and
D. P.
Lathrop
, “
Viscous effects in droplet-ejection capillary waves
,”
Phys. Rev. E
56
,
472
(
1997
).
6.
A.
James
,
B.
Vukasinovic
,
M. K.
Smith
, and
A.
Glezer
, “
Vibration-induced drop atomization and bursting
,”
J. Fluid Mech.
476
,
1
(
2003
).
7.
A.
James
,
M. K.
Smith
, and
A.
Glezer
, “
Vibration-induced drop atomization and the numerical simulation of low-frequency single-droplet ejection
,”
J. Fluid Mech.
476
,
29
(
2003
).
8.
B.
Vukasinovic
, “
Vibration-induced droplet atomization
,” Ph.D. thesis,
Georgia Institute of Technology
,
2002
.
9.
V. I.
Sorokin
, “
The effect of fountain formation at the surface of a vertically oscillating liquid
,”
Akust. Zh.
3
,
281
(
1957
).
10.
H.
Hashimoto
and
S.
Sudo
, “
Surface disintegration and bubble formation in vertically vibrated liquid column
,”
AIAA J.
18
,
442
(
1980
).
11.
W. T.
Shi
,
C. L.
Goodridge
, and
D. P.
Lathrop
, “
Breaking waves: bifurcations leading to a singular wave state
,”
Phys. Rev. E
56
,
4157
(
1997
).
12.
L.
Jiang
,
M.
Perlin
, and
W. W.
Schultz
, “
Period tripling and energy dissipation of breaking standing waves
,”
J. Fluid Mech.
369
,
273
(
1998
).
13.
A. J.
Yule
and
Y.
Al-Suleimani
, “
On droplet formation from capillary waves on a vibrating surface
,”
Proc. R. Soc. London, Ser. A
456
,
1069
(
2000
).
14.
H. E.
Edgerton
and
J. R.
Killian
,
Flash! Seeing the Unseen by Ultra High-Speed Photography
(
Hale, Cushman, and Flint
,
Boston
,
1939
).
15.
H. C.
Pumphrey
,
L. A.
Crum
, and
L.
Bjørnø
, “
Underwater sound produced by individual drop impact and rainfall
,”
J. Acoust. Soc. Am.
85
,
1518
(
1989
).
16.
H. N.
Oguz
and
A.
Prosperetti
, “
Bubble entrainment by the impact of drops on liquid surfaces
,”
J. Fluid Mech.
219
,
143
(
1990
).
17.
D. A.
Weiss
and
A. L.
Yarin
, “
Single drop impact onto liquid films: neck distortion, jetting, tiny bubble entrainment, and crown formation
,”
J. Fluid Mech.
385
,
229
(
1999
).
18.
J.
Fukai
,
Y.
Shiba
,
T.
Yamamoto
,
O.
Miyatake
,
D.
Poulikakos
,
C. M.
Megaridis
, and
Z.
Zhao
, “
Wetting effects on the spreading of a liquid droplet colliding with a flat surface: experiment and model
,”
Phys. Fluids
7
,
236
(
1995
).
19.
D. M.
Newitt
,
N.
Dombrowski
, and
F. H.
Knelman
, “
The mechanism of drop formation from gas or vapour bubbles
,”
Trans. Inst. Chem. Eng.
32
,
244
(
1954
).
20.
H. E.
Snyder
and
R. D.
Reitz
, “
Direct droplet production from a liquid film: a new gas-assisted atomization mechanism
,”
J. Fluid Mech.
375
,
363
(
1998
).
21.
Lord
Rayleigh
, “
On the instability of jets
,”
Proc. London Math. Soc.
4
,
4
(
1878
).
22.
E. F.
Goedde
and
M. C.
Yuen
, “
Experiments on liquid jet instability
,”
J. Fluid Mech.
40
,
495
(
1970
).
23.
A. M.
Sterling
and
C. A.
Sleicher
, “
The instability of capillary jets
,”
J. Fluid Mech.
68
,
477
(
1975
).
24.
K. C.
Chaudhary
and
L. G.
Redekopp
, “
The nonlinear capillary instability of a liquid jet. Part 1. Theory
,”
J. Fluid Mech.
96
,
257
(
1980
).
25.
K. C.
Chaudhary
and
T.
Maxworthy
, “
The nonlinear capillary instability of a liquid jet. Part 2. Experiments on jet behaviour before droplet formation
,”
J. Fluid Mech.
96
,
275
(
1980
).
26.
K. C.
Chaudhary
and
T.
Maxworthy
, “
The nonlinear capillary instability of a liquid jet. Part 3. Experiments on satellite drop formation and control
,”
J. Fluid Mech.
96
,
287
(
1980
).
27.
N. N.
Mansour
and
T. S.
Lundgren
, “
Satellite formation in capillary jet breakup
,”
Phys. Fluids A
2
,
1141
(
1990
).
28.
T. A.
Kowalewski
, “
On the separation of droplets from a liquid jet
,”
Fluid Dyn. Res.
17
,
121
(
1996
).
29.
D. B.
Bogey
, “
Drop formation in a circular liquid jet
,”
Annu. Rev. Fluid Mech.
11
,
207
(
1979
).
30.
S.
Tomotika
, “
Breaking up of a drop of viscous liquid immersed in another viscous fluid which is extending at a uniform rate
,”
Proc. R. Soc. London, Ser. A
153
,
302
(
1936
).
31.
I.
Frankel
and
D.
Weihs
, “
Stability of a capillary jet with linearly increasing axial velocity (with application to shaped charges)
,”
J. Fluid Mech.
155
,
289
(
1985
).
32.
I.
Frankel
and
D.
Weihs
, “
Influence of viscosity on the capillary instability of a stretching jet
,”
J. Fluid Mech.
185
,
361
(
1987
).
33.
H. A.
Stone
,
B. J.
Bentley
, and
L. G.
Leal
, “
An experimental study of transient effects in the breakup of viscous drops
,”
J. Fluid Mech.
173
,
131
(
1986
).
34.
H. A.
Stone
and
L. G.
Leal
, “
Relaxation and breakup of an initially extended drop in an otherwise quiescent fluid
,”
J. Fluid Mech.
198
,
399
(
1989
).
35.
D. H.
Peregrine
,
G.
Shoker
, and
A.
Symon
, “
The bifurcation of liquid bridges
,”
J. Fluid Mech.
212
,
25
(
1990
).
36.
H. A.
Stone
, “
Dynamics of drop deformation and breakup in viscous fluids
,”
Annu. Rev. Fluid Mech.
26
,
65
(
1994
).
37.
J.
Eggers
and
T.
Dupont
, “
Drop formation in a one-dimensional approximation of the Navier-Stokes equation
,”
J. Fluid Mech.
262
,
205
(
1994
).
38.
X. D.
Shi
,
M.
Brenner
, and
S. R.
Nagel
, “
A cascade of structure in a drop falling from a faucet
,”
Science
265
,
219
(
1994
).
39.
J. B.
Keller
and
M. J.
Miksis
, “
Surface tension driven flows
,”
J. Appl. Math.
43
,
268
(
1983
).
40.
M.
Brenner
,
X. D.
Shi
, and
S. R.
Nagel
, “
Iterated instabilities during droplet fission
,”
Phys. Rev. Lett.
73
,
3391
(
1994
).
41.
J.
Eggers
, “
Theory of drop formation
,”
Phys. Fluids
7
,
941
(
1995
).
42.
X.
Zhang
and
O. A.
Basaran
, “
An experimental study of dynamics of drop formation
,”
Phys. Fluids
7
,
1184
(
1995
).
43.
S. E.
Bechtel
,
C. D.
Carlson
, and
M. G.
Forest
, “
Recovery of the Rayleigh capillary instability from slender 1-D inviscid and viscous models
,”
Phys. Fluids
7
,
2956
(
1995
).
44.
M. P.
Brenner
,
J.
Eggers
,
K.
Joseph
,
S. R.
Nagel
, and
X. D.
Shi
, “
Breakdown of scaling in droplet fission at high Reynolds numbers
,”
Phys. Fluids
9
,
573
(
1997
).
45.
D. M.
Henderson
,
W. G.
Pritchard
, and
L. B.
Smolka
, “
On the pinch-off of a pendant drop of viscous fluid
,”
Phys. Fluids
9
,
3188
(
1997
).
46.
J. R.
Lister
and
H. A.
Stone
, “
Capillary breakup of a viscous thread surrounded by another viscous fluid
,”
Phys. Fluids
10
,
2758
(
1998
).
47.
C.
Pozrikidis
, “
Capillary instability and breakup of a viscous thread
,”
J. Eng. Math.
36
,
255
(
1999
).
48.
P. K.
Notz
and
O. A.
Basaran
, “
Dynamics and breakup of a contracting liquid filament
,”
J. Fluid Mech.
512
,
223
(
2004
).
49.
J.
Eggers
, “
Nonlinear dynamics and breakup of free-surface flows
,”
Rev. Mod. Phys.
69
,
865
(
1997
).
50.
D. M.
Henderson
,
H.
Segur
,
L. B.
Smolka
, and
M.
Wadati
, “
The motion of a falling liquid filament
,”
Phys. Fluids
12
,
550
(
2000
).
51.
R. G.
Sweet
, “
High frequency recording with electrostatically deflected ink jets
,”
Rev. Sci. Instrum.
36
,
131
(
1965
).
52.
R. R.
Allen
,
J. D.
Meyer
, and
W. R.
Knight
, “
Thermodynamics and hydrodynamics of thermal ink jets
Hewlett-Packard J.
36
,
21
(
1985
).
53.
K.
Kumar
and
L. S.
Tuckerman
, “
Parametric instability of the interface between two fluids
,”
J. Fluid Mech.
279
,
49
(
1994
).
54.
E. D.
Wilkes
,
S. D.
Phillips
, and
O. A.
Basaran
, “
Computational and experimental analysis of dynamics of drop formation
,”
Phys. Fluids
11
,
3577
(
1999
).
55.
L. E.
Scriven
, “
Dynamics of a fluid interface
,”
Chem. Eng. Sci.
12
,
98
(
1960
).
You do not currently have access to this content.