When a water drop falls onto an oil-water interface, the drop usually rests for some time before merging with the water underneath the interface. We report experiments on this process using water- and oil-based Newtonian liquids and polymer solutions, with an emphasis on the non-Newtonian effects. We deduce that the drop surface is immobilized by contaminants pre-existing in the fluids, and find that the rest time scales with the matrix viscosity for Newtonian fluids. The results are compared with lubrication models for film drainage. If the surrounding matrix is a dilute polymer solution, the rest time is identical to that for a matrix of the solvent alone. Further investigation indicates that the polymer molecules have been cleared from the film by surface adsorption. Depending on the fluid properties and drop size, the drop-interface merging may be completed in one shot or through a cascade of partial coalescence. Partial coalescence occurs for an intermediate range of drop sizes; it is arrested by viscosity for smaller drops and by gravity for larger ones. When either the drop or the matrix phase is a polymer solution, viscoelasticity is shown to suppress partial coalescence for smaller drops. This is apparently due to the inhibition of capillary pinch-off which would otherwise produce a secondary drop before the merging is complete.

1.
G. E.
Charles
and
S. G.
Mason
, “
The coalescence of liquid drops with flat liquid/liquid interfaces
,”
J. Colloid Sci.
15
,
236
(
1960
).
2.
G. E.
Charles
and
S. G.
Mason
, “
The mechanism of partial coalescence of liquid drops at liquid/liquid interfaces
,”
J. Colloid Sci.
15
,
105
(
1960
).
3.
B. K.
Chi
and
L. G.
Leal
, “
A theoretical study of the motion of a viscous drop toward a fluid interface at low Reynolds number
,”
J. Fluid Mech.
201
,
123
(
1989
).
4.
X.
Zheng
,
J.
Lowengrub
,
A.
Anderson
, and
V.
Cristini
, “
Adaptive unstructured volume remeshing—II: Application to two- and three-dimensional level-set simulations of multiphase flow
,”
J. Comput. Phys.
208
,
626
(
2005
).
5.
J.-D.
Chen
,
P. S.
Hahn
, and
J. C.
Slattery
, “
Coalescence time for a small drop or bubble at a fluid-fluid interface
,”
AIChE J.
30
,
622
(
1984
).
6.
A. F.
Jones
and
S. D. R.
Wilson
, “
The film drainage problem in droplet coalescence
,”
J. Fluid Mech.
87
,
263
(
1987
).
7.
S. G.
Yiantsios
and
R. H.
Davis
, “
On the buoyancy-driven motion of a drop towards a rigid surface of a deformable interface
,”
J. Fluid Mech.
217
,
547
(
1990
).
8.
A.
Bhakta
and
E.
Ruckenstein
, “
Decay of standing foams: drainage, coalescence and collapse
,”
Adv. Colloid Interface Sci.
70
,
1
(
1997
).
9.
G. V.
Jeffreys
and
J. L.
Hawksley
, “
Coalescence of liquid droplets in two-component two-phase systems: Part II. theoretical analysis of coalescence rate
,”
AIChE J.
11
,
418
(
1965
).
10.
T. D.
Hodgson
and
D. R.
Woods
, “
The effect of surfactants on the coalescence of a drop at an interface
,”
J. Colloid Interface Sci.
30
,
429
(
1969
).
11.
S. A. K.
Jeelani
and
S.
Hartland
, “
Effect of interfacial mobility on thin film drainage
,”
J. Colloid Interface Sci.
164
,
296
(
1994
).
12.
G. D. M.
MacKay
and
S. G.
Mason
, “
The gravity approach and coalescence of fluid drops at liquid interfaces
,”
Can. J. Chem. Eng.
41
,
203
(
1963
).
13.
A. D.
Nikolov
and
D. T.
Wasan
, “
Effects of surfactant on multiple stepwise coalescence of single drops at liquid-liquid interfaces
,”
Ind. Eng. Chem. Res.
34
,
3653
(
1995
).
14.
S. T.
Thoroddsen
and
K.
Takehara
, “
The coalescence cascade of a drop
,”
Phys. Fluids
12
,
1265
(
2000
).
15.
Z.
Mohamed-Kassim
and
E. K.
Longmire
, “
Drop coalescence through a liquid/liquid interface
,”
Phys. Fluids
16
,
2170
(
2004
).
16.
F.
Blanchette
and
T. P.
Bigioni
, “
Partial coalescence of drops at liquid interfaces
,”
Nat. Phys.
2
,
254
(
2006
).
17.
T. M.
Dreher
,
J.
Glass
,
A. J.
O’Connor
, and
G. W.
Stevens
, “
Effect of rheology on coalescence rates and emulsion stability
,”
AIChE J.
45
,
1182
(
1999
).
18.
X.
Chen
,
S.
Mandre
, and
J. J.
Feng
, “
Partial coalescence between a drop and a liquid-liquid interface
,”
Phys. Fluids
18
,
051705
(
2006
).
19.
S. H.
Anastasiadis
,
J.-K.
Chen
,
J. T.
Koberstein
,
A. F.
Siegel
,
J. E.
Sohn
, and
J. A.
Emerson
, “
The determination of interfacial tension by video image processing of pendant fluid drops
,”
J. Colloid Interface Sci.
119
,
55
(
1987
).
20.
L. E.
Rodd
,
T. P.
Scott
,
D. V.
Boger
,
J. J.
Cooper-White
, and
G. H.
McKinley
, “
The inertio-elastic planar entry flow of low-viscosity elastic fluids in micro-fabricated geometries
,”
J. Non-Newtonian Fluid Mech.
129
,
1
(
2005
).
21.
R. B.
Bird
,
C. F.
Curtiss
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids
(
Wiley
,
New York
,
1987
), Vol.
2
.
22.
P.
Ghosh
and
V. A.
Juvekar
, “
Analysis of the drop rest phenomenon
,”
Trans. IChemE, Part C
80
,
715
(
2002
).
23.
D. R.
Woods
and
K. A.
Burrill
, “
The stability of emulsions
,”
J. Electroanal. Chem. Interfacial Electrochem.
37
,
191
(
1972
).
24.
P. G.
de Gennes
, “
Polymer solutions near an interface. 1. Adsorption and depletion layers
,”
Macromolecules
14
,
1637
(
1981
).
25.
A. N.
Semenov
and
J.-F.
Joanny
, “
Kinetics of adsorption of linear homopolymers onto flat surfaces: Rouse dynamics
,”
J. Phys. II
5
,
859
(
1995
).
26.
D.
Myers
,
Surfaces, Interfaces, and Colloids: Principles and Applications
, 2nd ed. (
Wiley
,
New York
,
1999
).
27.
B.
O’Shaughnessy
and
D.
Vavylonis
, “
Non-equilibrium in adsorbed polymer layers
,”
J. Phys.: Condens. Matter
17
,
R63
(
2005
).
28.
R.-J.
Roe
,
V. L.
Bacchetta
, and
P. M. G.
Wong
, “
Refinement of pendent drop method for the measurement of surface tension of viscous liquid
,”
J. Phys. Chem.
71
,
4190
(
1967
).
29.
M.
Mulqueen
and
D.
Blankschtein
, “
Theoretical and experimental investigation of the equilibrium oil-water interfacial tensions of solutions containing surfactant mixtures
,”
Langmuir
18
,
365
(
2002
).
30.
S. A.
Nespolo
,
D. Y. C.
Chan
,
F.
Grieser
,
P. G.
Hartley
, and
G. W.
Stevens
, “
Forces between a rigid probe particle and a liquid interface: Comparison between experiment and theory
,”
Langmuir
19
,
2124
(
2003
).
31.
S. T.
Thoroddsen
,
T. G.
Etoh
, and
K.
Takehara
, “
Air entrapment under an impacting drop
,”
J. Fluid Mech.
478
,
125
(
2003
).
32.
M.
Goldin
,
J.
Yerushalmi
,
R.
Pfeffer
, and
R.
Shinnar
, “
Breakup of a laminar capillary jet of a viscoelastic fluid
,”
J. Fluid Mech.
38
,
689
(
1969
).
33.
Y.
Christanti
and
L. M.
Walker
, “
Surface tension driven jet break up of strain-hardening polymer solutions
,”
J. Non-Newtonian Fluid Mech.
100
,
9
(
2001
).
34.
J.
Li
and
M. A.
Fontelos
, “
Drop dynamics on the beads-on-string structure for viscoelastic jets: A numerical study
,”
Phys. Fluids
15
,
922
(
2003
).
35.
M. S. N.
Oliveira
and
G. H.
McKinley
, “
Iterated stretching and multiple beads-on-a-string phenomena in dilute solutions of highly extensible flexible polymers
,”
Phys. Fluids
17
,
071704
(
2005
).
36.
P.
Doshi
,
I.
Cohen
,
W. W.
Zhang
,
M.
Siegel
,
P.
Howell
,
O. A.
Basaran
, and
S. R.
Nagel
, “
Persistence of memory in drop breakup: The breakdown of universality
,”
Science
302
,
1185
(
2003
).
37.
R. V.
Craster
,
O.
Matar
, and
D. T.
Papageorgiou
, “
Pinchoff and satellite formation in surfactant covered viscous threads
,”
Phys. Fluids
14
,
1364
(
2002
).
38.
L. Y.
Yeo
,
O. K.
Matar
,
E. S. P.
de Ortiz
, and
G. H.
Hewitt
, “
Film drainage between two surfactant-coated drops colliding at constant approach velocity
,”
J. Colloid Interface Sci.
257
,
93
(
2003
).
39.
A. W.
Adamson
,
Physical Chemistry of Surfaces
, 3rd ed. (
Wiley
,
New York
,
1976
).
40.
V.
Levich
,
Physicochemical Hydrodynamics
(
Prentice-Hall
,
Englewood Cliffs
,
1962
).
You do not currently have access to this content.