The interaction of a barotropic, dipolar vortex with a step-like topography is studied by means of laboratory experiments in a rotating tank and by numerical simulations based on a quasi-two-dimensional model. Two main configurations are analyzed: when the dipole approaches a “low” or a “high” step with respect to the maximum water depth. For relatively low steps, the vortex crosses the topography with a deflected trajectory, while maintaining its dipolar structure. The sense of this deflection depends on whether the dipole reaches a step-up or a step-down. For high steps, in contrast, the dipole is not able to cross the topography, and the reflection of one of the dipole structures is observed. In both cases, one observes a weak flow along the topography with shallow water on its right. The essential features of the flow evolution for low and high steps can be explained by using arguments of potential vorticity conservation (due to the weakness of viscous effects). In order to determine whether a barotropic dipole is able to cross the step or is reflected, qualitative criteria based on the step height and dipole strength are derived using inviscid arguments.

1.
E. J.
Hopfinger
and
G. J. F.
van Heijst
, “
Vortices in rotating fluids
,”
Annu. Rev. Fluid Mech.
25
,
241
(
1993
).
2.
P.
Orlandi
, “
Vortex dipole rebound from a wall
,”
Phys. Fluids A
2
,
1429
(
1990
).
3.
G. F.
Carnevale
,
O. U.
Velasco Fuentes
, and
P.
Orlandi
, “
Inviscid dipole-vortex rebound from a wall or coast
,”
J. Fluid Mech.
351
,
75
(
1997
).
4.
L.
Zavala Sansón
and
G. J. F.
van Heijst
, “
Ekman effects in a rotating flow over bottom topography
,”
J. Fluid Mech.
471
,
239
(
2002
).
5.
Y. H.
Spitz
and
D.
Nof
, “
Separation of boundary currents due to bottom topography
,”
Deep-Sea Res., Part A
38
,
1
(
1991
).
6.
M. E.
Stern
and
J.
Austin
, “
Entrainment of shelf water by a bifurcating continental boundary current
,”
J. Phys. Oceanogr.
25
,
3118
(
1995
).
7.
L.
Zavala Sansón
,
R.
Serravall
,
G. F.
Carnevale
, and
G. J. F.
van Heijst
, “
Experiments and simulations on coastal flows in the presence of a topographic slope
,”
J. Phys. Oceanogr.
35
,
2204
(
2005
).
8.
B. W.
An
and
N. R.
McDonald
, “
Coastal currents and eddies and their interaction with topography
,”
Dyn. Atmos. Oceans
40
,
237
(
2005
).
9.
G. F.
Carnevale
,
S. G. L.
Smith
,
F.
Crisciani
,
R.
Purini
, and
R.
Serravall
, “
Bifurcation of a coastal current at an escarpment
,”
J. Phys. Oceanogr.
29
,
969
(
1999
).
10.
L.
Zavala Sansón
,
G. J. F.
van Heijst
, and
J. J. J.
Doorschot
, “
Reflection of barotropic vortices from a step-like topography
,”
Nuovo Cimento Soc. Ital. Fis., C
22
,
909
(
1999
).
11.
D. C.
Dunn
,
N. R.
McDonald
, and
E. R.
Johnson
, “
The motion of a singular vortex near an escarpment
,”
J. Fluid Mech.
448
,
335
(
2001
).
12.
D. C.
Dunn
, “
The evolution of an initially circular vortex near an escarpment. Part II: numerical results
,”
Eur. J. Mech. B/Fluids
21
,
677
(
2002
).
13.
L.
Zavala Sansón
,
G. J. F.
van Heijst
, and
N. A.
Backx
, “
Ekman decay of a dipolar vortex in a rotating fluid
,”
Phys. Fluids
13
,
440
(
2001
).
14.
O. U.
Velasco Fuentes
and
G. J. F.
van Heijst
, “
Experimental study of dipolar vortices on a topographic β-plane
,”
J. Fluid Mech.
259
,
79
(
1994
).
15.
V. V.
Meleshko
and
G. J. F.
van Heijst
, “
On Chaplygin’s investigations of two-dimensional vortex structures in an inviscid fluid
,”
J. Fluid Mech.
272
,
157
(
1994
).
16.
A. H.
Nielsen
and
J.
Juul Rasmussen
, “
Formation and temporal evolution of the Lamb-dipole
,”
Phys. Fluids
9
,
982
(
1997
).
17.
J. B.
Flór
,
G. J. F.
van Heijst
, and
R.
Delfos
, “
Decay of dipolar vortex structures in a stratified fluid
,”
Phys. Fluids
7
,
374
(
1995
).
You do not currently have access to this content.