The van der Waals polytropic gas model is used to investigate the role of attractive and repulsive intermolecular forces and the influence of molecular complexity on the possible nonclassical gas dynamic behavior of vapors near the liquid-vapor saturation curve. The decrease of the sound speed upon isothermal compression is due to the well-known action of the van der Waals attractive forces and this effect is shown here to be comparatively larger for more complex molecules with a large number of active vibrational modes; for these fluids isentropic flows are in fact almost isothermal. Contributions to the speed of sound resulting from intermolecular forces and the role of molecular complexity are analyzed in details for both isothermal and isentropic transformations. Results of the exact solution to the problem of a finite pressure perturbation traveling in a still fluid are presented in three exemplary cases: ideal gas, dense gas and nonclassical gas behavior. A classification scheme of fluids based on the possibility of exhibiting different gas dynamic behaviors is also proposed.

1.
R.
Menikoff
and
B. J.
Plohr
, “
The Riemann problem for fluid flow of real material
,”
Rev. Mod. Phys.
61
,
75
(
1989
).
2.
M. S.
Cramer
, “
Nonclassical dynamics of classical gases
,” in
Nonlinear Waves in Real Fluids
, edited by
A.
Kluwick
(
Springer-Verlag
,
New York
,
1991
), pp.
91
145
.
3.
A.
Kluwick
,
Handbook of Shock Waves
(
Academic
,
New York
,
2000
), Vol.
1
, Chap. 3.4, pp.
339
411
.
4.
P. A.
Thompson
and
K. C.
Lambrakis
, “
Negative shock waves
,”
J. Fluid Mech.
60
,
187
(
1973
).
5.
A. A.
Borisov
,
Al. A.
Borisov
,
S. S.
Kutateladze
, and
V. E.
Nakaryakov
, “
Rarefaction shock waves near the critic liquid-vapour point
,”
J. Fluid Mech.
126
,
59
(
1983
).
6.
M. S.
Cramer
and
R.
Sen
, “
Shock formation in fluids having embedded regions of negative nonlinearity
,”
Phys. Fluids
29
,
2181
(
1986
).
7.
M. S.
Cramer
and
R.
Sen
, “
Exact solutions for sonic shocks in van der Waals gases
,”
Phys. Fluids
30
,
377
(
1987
).
8.
B. P.
Brown
and
B. M.
Argrow
, “
Nonclassical dense gas flows for simple geometries
,”
AIAA J.
36
,
1842
(
1998
).
9.
G. H.
Schnerr
and
P.
Leidner
, “
Two-dimensional nozzle flow of dense gases
.” in
Fluids Engineering Conference
, No. 93-FE-8, ASME (
1993
).
10.
S. H.
Morren
, “
Transonic aerodynamics of dense gases
,” Technical Memorandum TM 103722, NASA (
1991
).
11.
M. S.
Cramer
and
G. M.
Tarkenton
, “
Transonic flows of Bethe-Zel’dovich-Thompson fluids
,”
J. Fluid Mech.
240
,
197
(
1992
).
12.
P.
Colonna
and
S.
Rebay
, “
Numerical simulation of dense gas flows on unstructured grids with an implicit high resolution upwind Euler solver
,”
Int. J. Numer. Methods Fluids
46
,
735
(
2004
).
13.
B. P.
Brown
and
B. M.
Argrow
, “
Two-dimensional shock tube flow for dense gases
,”
J. Fluid Mech.
349
,
95
(
1997
).
14.
B. M.
Argrow
, “
Computational analysis of dense gas shock tube flow
,”
Shock Waves
6
,
241
(
1996
).
15.
A.
Guardone
, “
Nonclassical gas dynamics: Thermodynamic modeling and numerical simulation of multidimensional flows of BZT fluids
,” Ph.D. thesis, Politecnico di Milano, Italy (
2001
).
16.
G. H.
Schnerr
and
P.
Leidner
, “
Numerical investigation of axial cascades for dense gases
,” in
PICAST’1—Pacific International Conference on Aerospace Science Technology
, edited by
E. L.
Chin
, Taiwan, Republic of China,
National Cheng Kung University
, December
1993
, Vol.
2
, pp.
818
825
.
17.
J. F.
Monaco
,
M. S.
Cramer
, and
L. T.
Watson
, “
Supersonic flows of dense gases in cascade configurations
,”
J. Fluid Mech.
330
,
31
(
1997
).
18.
B. P.
Brown
and
B. M.
Argrow
, “
Application of Bethe-Zel’dovic-Thompson fluids in organic Rankine cycle engines
,”
J. Power Sources
16
,
1118
(
2000
).
19.
W. D.
Hayes
, “
The basic theory of gas dynamic discontinuities
,” in
High Speed Aerodynamics and Jet Propulsion
, edited by
H. W.
Emmons
(
Princeton University Press
,
Princeton
,
1960
), Vol.
3
, pp.
416
481
.
20.
P. A.
Thompson
, “
A fundamental derivative in gas dynamics
,”
Phys. Fluids
14
,
1843
(
1971
).
21.
M. H.
Zucrow
and
J. D.
Hoffman
,
Gas Dynamics
(
Wiley
,
New York
,
1976
), Vol.
1
.
22.
P. A.
Thompson
and
K. C.
Lambrakis
, “
Negative shock waves
,”
J. Fluid Mech.
60
,
187
(
1973
).
23.
P. A.
Thompson
, “
A fundamental derivative in gas dynamics
,”
Phys. Fluids
14
,
1843
(
1971
).
24.
P. A.
Thompson
,
Compressible Fluid Dynamics
(
McGraw-Hill
,
New York
,
1988
), p.
384
.
25.
M. S.
Cramer
and
A.
Kluwick
, “
On the propagation of waves exhibiting both positive and negative nonlinearity
,”
J. Fluid Mech.
142
,
9
(
1984
).
26.
P. A.
Thompson
and
Y.
Kim
, “
Direct observation of shock splitting in a vapor-liquid system
,”
Phys. Fluids
26
,
3211
(
1983
).
27.
P. A.
Thompson
,
G. A.
Carofano
, and
Y.
Kim
, “
Shock waves and phase changes in a large heat capacity fluid emerging from a tube
,”
J. Fluid Mech.
166
,
57
(
1986
).
28.
S. C.
Gulen
,
P. A.
Thompson
, and
H. A.
Cho
, “
Rarefaction and liquefaction shock waves in regular and retrograde fluids with near-critical end states
,” in
Adiabatic Waves in Liquid-Vapor Systems
(
Springer-Verlag
,
Berlin
,
1989
), pp.
281
290
.
29.
P. A.
Thompson
, “
Liquid-vapor adiabatic phase changes and related phenomena
,” in
Nonlinear Waves in Real Fluids
, edited by
A.
Kluwick
(
Springer-Verlag
,
New York
,
1991
), pp.
147
213
.
30.
J. R.
Simões-Moreira
and
J. E.
Shepherd
, “
Evaporation waves in superheated dodecane
,”
J. Fluid Mech.
382
,
63
(
1999
).
31.
A. G.
Ivanov
and
S. A.
Novikov
, “
Rarefaction shock waves in iron and steel
,”
Zh. Eksp. Teor. Fiz.
40
,
1880
(
1961
).
32.
S. S.
Kutateladze
,
V. E.
Nakoryakov
, and
A. A.
Borisov
, “
Rarefaction waves in liquid and gas-liquid media
,”
Annu. Rev. Fluid Mech.
19
,
577
(
1987
).
33.
M. S.
Cramer
, “
Negative nonlinearity in selected fluorocarbons
,”
Phys. Fluids A
1
,
1894
(
1989
).
34.
S. H.
Fergason
,
T. L.
Ho
,
B. M.
Argrow
, and
G.
Emanuel
, “
Theory for producing a single-phase rarefaction shock wave in a shock tube
,”
J. Fluid Mech.
445
,
37
(
2001
).
35.
S. H.
Fergason
,
A.
Guardone
, and
B. M.
Argrow
, “
Construction and validation of a dense gas shock tube
,”
J. Thermophys. Heat Transfer
17
,
326
(
2003
).
36.
H. A.
Bethe
, “
The theory of shock waves for an arbitrary equation of state
,” Technical Report No. 545,
Office of Scientific Research and Development
(
1942
).
37.
Y. B.
Zel’dovich
, “
On the possibility of rarefaction shock waves
,”
Zh. Eksp. Teor. Fiz.
4
,
363
(
1946
).
38.
K. C.
Lambrakis
and
P. A.
Thompson
, “
Existence of real fluids with a negative fundamental derivative
,”
Phys. Fluids
15
,
933
(
1972
).
39.
P.
Colonna
and
P.
Silva
, “
Dense gas thermodynamic properties of single and multicomponent fluids for fluid dynamics simulations
,”
J. Fluids Eng.
125
,
414
(
2003
).
40.
A.
Guardone
and
B. M.
Argrow
, “
Nonclassical gas dynamic region of selected fluorocarbons
,”
Phys. Fluids
17
,
116102
1
(
2005
).
41.
P.
Colonna
, “
Experimental and numerical investigation of dense gas fluid dynamics and BZT fluids exploitation for energy conversion applications
,” NWO—VIDI project proposal,
Delft University of Technology
, Delft, February
2004
.
42.
D. A.
McQuarrie
,
Statistical Mechanics
(
Harper-Collins
,
New York
,
1976
), Chap. 14-2, pp.
304
306
.
43.
A.
Guardone
,
L.
Vigevano
, and
B. M.
Argrow
, “
Assessment of thermodynamic models for dense gas dynamics
,”
Phys. Fluids
16
,
3878
(
2004
).
44.
H. B.
Callen
,
Thermodynamics and an Introduction to Thermostatistics
, 2nd ed. (
Wiley
,
New York
,
1985
).
45.
A.
Kluwick
, “
Internal flows of dense gases
,”
Acta Mech.
169
,
123
(
2004
).
46.
R. J.
LeVeque
,
Numerical Methods for Conservation Laws
(
Birkhäuser
,
Basel
,
1992
).
47.
E.
Godlewski
and
P. A.
Raviart
,
Numerical Approximation of Hyperbolic Systems of Conservation Laws
(
Springer-Verlag
,
New York
,
1995
).
48.
L.
Quartapelle
,
L.
Castelletti
,
A.
Guardone
, and
G.
Quaranta
, “
Solution of the Riemann problem of classical gas dynamics
,”
J. Comput. Phys.
190
,
118
(
2003
).
49.
M. S.
Cramer
and
R.
Sen
, “
Exact solutions for sonic shocks in van der Waal’s gases
,”
Phys. Fluids
30
,
377
(
1987
).
50.
P.
Colonna Di Paliano
, “
Fluidi di lavoro multi componenti per cicli termodinamici di potenza
,” Ph.D. thesis, Politecnico di Milano, Italy (
1995
).
You do not currently have access to this content.