The van der Waals polytropic gas model is used to investigate the role of attractive and repulsive intermolecular forces and the influence of molecular complexity on the possible nonclassical gas dynamic behavior of vapors near the liquid-vapor saturation curve. The decrease of the sound speed upon isothermal compression is due to the well-known action of the van der Waals attractive forces and this effect is shown here to be comparatively larger for more complex molecules with a large number of active vibrational modes; for these fluids isentropic flows are in fact almost isothermal. Contributions to the speed of sound resulting from intermolecular forces and the role of molecular complexity are analyzed in details for both isothermal and isentropic transformations. Results of the exact solution to the problem of a finite pressure perturbation traveling in a still fluid are presented in three exemplary cases: ideal gas, dense gas and nonclassical gas behavior. A classification scheme of fluids based on the possibility of exhibiting different gas dynamic behaviors is also proposed.
Skip Nav Destination
Article navigation
Research Article|
May 16 2006
Molecular interpretation of nonclassical gas dynamics of dense vapors under the van der Waals model
P. Colonna;
P. Colonna
a)
Energy Technology Section, Process and Energy Department,
Delft University of Technology
, Leeghwaterstraat 44, 2628 CA Delft, The Netherlands
Search for other works by this author on:
A. Guardone
A. Guardone
b)
Dipartimento di Ingegneria Aerospaziale,
Politecnico di Milano
, Via La Masa 34, 20154 Milano, Italy
Search for other works by this author on:
Physics of Fluids 18, 056101 (2006)
Article history
Received:
June 28 2005
Accepted:
March 23 2006
Citation
P. Colonna, A. Guardone; Molecular interpretation of nonclassical gas dynamics of dense vapors under the van der Waals model. Physics of Fluids 1 May 2006; 18 (5): 056101. https://doi.org/10.1063/1.2196095
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00