An experimental and theoretical investigation of electrospun Newtonian and viscoelastic jets is presented. In particular, the effect of electrical conductivity and viscoelasticity on the jet profile during the initial stage of electrospinning is examined. In the theoretical study, the fluid is described as a leaky dielectric with charges only on the jet surface and viscoelastic models for polymer solutions such as Oldroyd-B and FENE-P are fully coupled with the fluid momentum equations and Gauss’ law. A theoretical model for the jet is derived using a thin filament approximation, and the resulting differential equations governing electrically charged, stable polymeric jets are solved numerically. Two different experimental systems are considered: Newtonian solutions of glycerol containing trace amounts of lithium chloride salt, and viscoelastic PIB/PB Boger fluid solutions. The experimental jet profiles from electrospinning experiments are compared with the model predictions. Our results reveal that increasing the electrical conductivity of the fluid by adding salt tends to delay the jet thinning. Increasing the fluid viscoelasticity causes a more rapid initial jet thinning, however further away from the spinneret viscoelastic jets are thicker than their Newtonian counterparts due to the higher elongational viscosity. We also investigate whether the general trends observed for these fluids can be applied to predict the qualitative behavior for the spinning of other fluid systems such as PEO/water solutions that have high conductivity and viscoelasticity.

1.
Z. M.
Huang
,
Y. Z.
Zhang
,
M.
Kotaki
, and
S.
Ramakrishna
, “
A review on polymer nanofibers by electrospinning and their application in nanocomposites
,”
Compos. Sci. Technol.
63
,
2223
(
2003
).
2.
H.
Fong
and
D. H.
Reneker
, “
6. Electrospinning and the formation of nanofibers
,” in
Structure Formation in Polymeric Fibers
(
Hanser Gardner
,
Cincinnati
,
2001
).
3.
P. P.
Tsai
,
H.
Schreuder-Gibson
, and
P.
Gibson
, “
Different electrostatic methods for making electret filters
,”
J. Electrost.
54
,
333
(
2002
).
4.
M. M.
Bergshoef
and
G. J.
Vaneso
, “
Transparent nanocomposites with ultrathin, electrospun Nylon—4, 6 fiber reinforcement
,”
Adv. Mater. (Weinheim, Ger.)
11
,
1362
(
1999
).
5.
L.
Huang
,
R. A.
McMillan
,
R. P.
Apkarian
,
B.
Pourdeyhimi
,
V. P.
Conticello
, and
E. L.
Chaikof
, “
Generation of synthetic elastin-mimetic small diameter fibers and fiber networks
,”
Macromolecules
33
,
2989
(
2000
).
6.
D. H.
Reneker
,
A. L.
Yarin
,
H.
Fong
, and
S.
Koombhongse
, “
Bending instability of electrically charged liquid jets of polymer solutions in electrospinning
,”
J. Appl. Phys.
87
,
4531
(
2000
).
7.
A. L.
Yarin
,
S.
Koombhongse
, and
D. H.
Reneker
, “
Bending instability in electrospinning of nanofibers
,”
J. Appl. Phys.
89
,
3018
(
2001
).
8.
A. F.
Spivak
,
Y. A.
Dzenis
, and
D. H.
Reneker
, “
A model of the steady state jet in the electrospinning process
,”
Mech. Res. Commun.
27
,
37
(
2000
).
9.
M. M.
Hohman
,
M.
Shin
,
G.
Rutledge
, and
M. P.
Brenner
, “
Electrospinning and electrically forced jets: I. Stability theory
,”
Phys. Fluids
13
,
2201
(
2001
).
10.
M. M.
Hohman
,
M.
Shin
,
G.
Rutledge
, and
M. P.
Brenner
, “
Electrospinning and electrically forced jets: II. Applications
,”
Phys. Fluids
13
,
2221
(
2001
).
11.
J. J.
Feng
, “
The stretching of an electrified non-Newtonian jet: a model for electrospinning
,”
Phys. Fluids
14
,
3912
(
2002
).
12.
J. J.
Feng
, “
Stretching of a straight electrically charged viscoelastic jet
,”
J. Non-Newtonian Fluid Mech.
116
,
55
(
2003
).
13.
S.
Reznik
,
A. L.
Yarin
,
S. A.
Theron
, and
E.
Zussman
, “
Transient and steady shapes of droplets attached to a surface in strong electric fields
,”
J. Fluid Mech.
516
,
349
(
2004
).
14.
S. A.
Theron
,
A. L.
Yarin
,
E.
Zussman
, and
E.
Kroll
, “
Multiple jets in electrospinning: experiment and modeling
,”
Polymer
46
,
2889
(
2005
).
15.
G.
Prilutski
,
R. K.
Gupta
,
T.
Sridhar
, and
M. E.
Ryan
, “
Model viscoelastic liquids
,”
J. Non-Newtonian Fluid Mech.
12
,
233
(
1983
).
16.
R. J.
Binnington
and
D. V.
Boger
, “
Constant viscosity elastic liquids
,”
J. Rheol.
29
,
887
(
1985
).
17.
M. E.
Mackay
and
D. V.
Boger
, “
An explanation of rheological properties of Boger fluids
,”
J. Non-Newtonian Fluid Mech.
22
,
235
(
1987
).
18.
S. J.
Muller
,
R. G.
Larson
, and
E. S. G.
Shaqfeh
, “
A purely elastic transition in Taylor-Couette flow
,”
Rheol. Acta
28
,
499
(
1989
).
19.
G. H.
McKinley
,
J. A.
Byars
,
R. A.
Brown
, and
R. C.
Armstrong
, “
Observations on the elastic instability in cone-and-plate and parallel-plate flows of a polyisobutylene Boger fluid
,”
J. Non-Newtonian Fluid Mech.
40
,
201
(
1991
).
20.
Y. L.
Joo
and
E. S. G.
Shaqfeh
, “
Observations of purely elastic instabilities in the Taylor-Dean flow of a Boger fluid
,”
J. Fluid Mech.
262
,
27
(
1994
).
21.
J. M.
White
and
S. J.
Muller
, “
Experimental studies on the effect of viscous heating on the hydrodynamic stability of viscoelastic Taylor-Couette flow
,”
J. Rheol.
47
,
1467
(
2003
).
22.
R. H.
Perry
and
D. W.
Green
,
Perry’s Chemical Engineers Handbook
, 7th ed. (
McGraw-Hill
,
New York
,
1997
).
23.
Y. M.
Shin
,
M. M.
Hohman
,
M. P.
Brenner
, and
G. C.
Rutledge
, “
Experimental characterization of electrospinning: the electrically forced jet and instabilities
,”
Polymer
42
,
9955
(
2001
).
24.
A.
Theron
,
E.
Zussman
, and
A. L.
Yarin
, “
Experimental investigation of the governing parameters in the electrospinning of polymer solutions
,”
Polymer
45
,
2017
(
2004
).
25.
J. R.
Melcher
and
G. I.
Taylor
, “
Electrohydrodynamics: A review of the role of interfacial shear stresses
,”
Annu. Rev. Fluid Mech.
1
,
111
(
1969
).
26.
G. I.
Taylor
, “
Electrically driven jets
,”
Proc. R. Soc. London, Ser. A
313
,
453
(
1969
).
27.
D. A
Saville
, “
Electrohydrodynamics: The Taylor-Melcher leaky dielectric model
,”
Annu. Rev. Fluid Mech.
29
,
27
(
1997
).
28.
R. B.
Bird
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids, 1
(
Wiley
,
New York
,
1987
).
29.
V. N.
Kirichenko
,
I. V.
Petryanov-Sokolov
,
N. N.
Suprun
, and
A. A.
Shutov
, “
Asymptotic radius of a slightly conducting liquid jet in an electric field
,”
Sov. Phys. Dokl.
31
,
611
(
1986
).
30.
L. F.
Shampine
,
R.
Ketzscher
, and
S. A.
Forth
, “
Using AD to solve BVPs in MATLAB
,”
ACM Trans. Math. Softw.
31
,
79
(
2005
).
31.
I.
Ghosh
,
G. H.
McKinley
,
R. A.
Brown
, and
R. C.
Armstrong
, “
Deficiencies of FENE dumbbell models in describing the rapid stretching of dilute polymer solutions
,”
J. Rheol.
45
,
721
(
2001
).
32.
L. J.
Fetters
,
D. J.
Lohse
, and
R. H.
Colby
, “
24. Chain dimensions and entanglement spacing
,” in Physical Properties of Polymers Handbook (AIP Press, Woodbury, NY, 1996)
You do not currently have access to this content.