An electrohydrodynamic micropump driven by a high-frequency traveling electric wave (110MHz) at low voltage (410V) is presented. The pumping rate is dependent on the profile (inhomogeneities) of the dielectric properties of the medium. Defined temperature fields serve as a versatile mean for the control of these profiles. We produce temperature fields in two ways: by the electric wave itself and by external Peltier elements. We investigated experimentally the influence of two-dimensional and three-dimensional electrode arrays on the pumping behavior and compared it to theoretical predictions of temperature field calculations using finite element analysis. The two results are in good agreement. Furthermore, we demonstrate the effect of an additional external temperature field that results in an advanced performance of the pump.

1.
C.
Duschl
,
P.
Geggier
,
M.
Jäger
,
M.
Stelzle
,
T.
Müller
,
T.
Schnelle
, and
G. R.
Fuhr
, “
Versatile chip-based tools for the controlled manipulation of microparticles in biology using high frequency electromagnetic fields
,” in
Lab-on-chips for Cellomics: Micro and Nanotechnologies for Life Science
, edited by
H.
Andersson
, and
A.
van der Berg
(
Kluwer Academic
, Amsterdam,
2004
), p.
83
.
2.
K.-L.
Wang
and
T. B.
Jones
, “
Electrowetting dynamics of microfluidic actuation
,”
Langmuir
21
,
4211
(
2005
).
3.
R.
Pethig
,
M. S.
Talary
, and
R. S.
Lee
, “
Enhancing traveling-wave dielectrophoresis with signal superposition
,”
IEEE Eng. Med. Biol. Mag.
22
,
43
(
2003
).
4.
S.
Gawad
,
K.
Cheung
,
U.
Seger
,
A.
Bertsch
, and
P.
Renaud
, “
Dielectric spectroscopy in a micromachined flow cytometer: theoretical and practical considerations
,”
Lab Chip
4
,
241
(
2004
).
5.
C. F.
Fuller
,
J.
Hamilton
,
H.
Ackler
,
P.
Krulevitch
,
B.
Boser
,
A.
Eldredge
,
F. F.
Becker
,
J.
Yang
, and
P. R. C.
Gascoyne
, “
Microfabricated multi-frequency particle impedance characterization system
,” in
Micro Total Analysis Systems 2000
, edited by
A.
van den Berg
,
W.
Olthuis
, and
P.
Bergveld
(
Kluwer Academic
, Amsterdam,
2000
), p.
265
.
6.
J. S.
Jang
and
S. S.
Lee Selam
, “
Theoretical and experimental study of MHD micropumps
,”
Sens. Actuators B
80
,
84
(
2000
).
7.
V.
Pretorius
,
B. J.
Hopkins
, and
J. D.
Schieke
, “
Electro-osmosis: new concept for high-speed liquid-chromatography
,”
J. Chromatogr.
99
,
23
(
1974
).
8.
T. E.
McKnight
,
C. T.
Culbertson
,
S. C.
Jacobson
, and
J. M.
Ramsey
, “
Electroosmotically induced hydraulic pumping with integrated electrodes in microfluidic devices
,”
Anal. Chem.
73
,
4045
(
2001
).
9.
J. R.
Melcher
, “
Traveling-wave induced electroconvection
,”
Phys. Fluids
9
,
1548
(
1966
).
10.
J. R.
Melcher
and
M. S.
Firebaugh
, “
Traveling-wave bulk electroconvection induced across a temperature gradient
,”
Phys. Fluids
10
,
1178
(
1967
).
11.
G.
Fuhr
,
T.
Schnelle
, and
B.
Wagner
, “
Travelling wave-driven microfabricated electrohydrodynamic pumps for liquids
,”
J. Micromech. Microeng.
4
,
217
(
1994
).
12.
D. R.
Lide
,
CRC Handbook of Chemistry and Physics
(
CRC Press
, Boca Raton, FL,
2004
).
13.
G.
Fuhr
,
R.
Hagedorn
,
T.
Müller
,
W.
Benecke
, and
B.
Wagner
, “
Microfabricated electrohydrodynamic (EDH) pumps for liquids of higher conductivity
,”
J. Microelectromech. Syst.
1
,
141
(
1992
).
14.
I. R.
Perch-Nielsen
,
N. G.
Green
, and
A.
Wolff
, “
Numerical simulation of travelling wave induced electrothermal fluid flow
,”
J. Phys. D
37
,
2323
(
2004
).
15.
A.
Ramos
,
H.
Morgan
,
N. G.
Green
, and
A.
Castellanos
, “
ac electrokinetics: a review of forces in microelectrode structures
,”
J. Phys. D
31
,
2338
(
1998
).
16.
D. J.
Laser
and
J. G.
Santiago
, “
A review of micropumps
,”
J. Micromech. Microeng.
14
,
R35
(
2004
).
You do not currently have access to this content.