The Maxey-Riley [Phys. Fluids26, 883 (1983)] particle equation of motion is considered without the history term and for an asymptotically small Stokes number. The equation admits a globally attractive invariant manifold identified as the Eulerian particle velocity field asymptotically close to the unperturbed fluid velocity field, thus suppressing the inconsequential initial transients. A recursive asymptotic scheme is obtained for the calculation of the invariant manifold in any order of accuracy. The dimension of the particle equation on the invariant manifold is reduced by half, which considerably facilitates the analysis of its motion in physical space. Structural stability theory provides comprehensive qualitative description of the particle motion.

1.
M. R.
Maxey
and
J. J.
Riley
, “
Equation of motion for a small rigid sphere in a nonuniform flow
,”
Phys. Fluids
26
,
883
(
1983
).
2.
M. R.
Maxey
, “
The motion of small spherical particles in a cellular flow field
,”
Phys. Fluids
30
,
1915
(
1987
).
3.
L. P.
Wang
,
M. R.
Maxey
,
T. D.
Burton
, and
D. E.
Stock
, “
Chaotic dynamics of particle dispersion in fluids
,”
Phys. Fluids A
4
,
1789
(
1992
).
4.
A.
Babiano
,
J. H. E.
Cartwright
,
O.
Piro
, and
A.
Provenzale
, “
Dynamics of a small neutrally buoyant sphere in a fluid and targeting in Hamiltonian systems
,”
Phys. Rev. Lett.
84
,
5764
(
2000
).
5.
M. R.
Maxey
, “
The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields
,”
J. Fluid Mech.
174
,
441
(
1986
).
6.
M. R.
Maxey
and
S.
Corrsin
, “
Gravitational settling of aerosol particles in randomly oriented cellular flow fields
,”
J. Atmos. Sci.
43
,
1112
(
1987
).
7.
L. P.
Wang
and
M. R.
Maxey
, “
Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence
,”
J. Fluid Mech.
256
,
27
(
1993
).
8.
E.
Mograbi
and
E.
Bar-Ziv
, “
Local effects of StO(1) on small particle motion in a linear flow field
,”
Phys. Fluids
17
,
112101
(
2005
).
9.
J.
Rubin
,
C. K. R. T.
Jones
, and
M. R.
Maxey
, “
Settling and asymptotic motion of aerosol particles in cellular flow fields
,”
J. Nonlinear Sci.
5
,
337
(
1995
).
10.
O. A.
Druzhinin
, “
On the stability of a stationary solution of the Tchen’s equation
,”
Phys. Fluids
12
,
1878
(
2000
).
11.
M. H.
Kobayashi
and
F. M.
Coimbra
, “
On the stability of the Maxey-Riley equation in nonuniform linear flows
,”
Phys. Fluids
17
,
113301
(
2005
).
12.
S.
Elghobashi
and
G. C.
Truesdell
, “
Direct simulation of particle dispersion in a decaying isotropic turbulence
,”
J. Fluid Mech.
242
,
655
(
1992
).
13.
V.
Armenio
and
V.
Fiorotto
, “
The importance of the forces acting on particles in turbulent flows
,”
Phys. Fluids
13
,
2437
(
2001
).
14.
R.
Mei
, “
History force on a sphere due to a step change in the free-stream velocity
,”
Int. J. Multiphase Flow
19
,
509
(
1993
).
15.
D. J.
Vojir
and
E. E.
Michaelides
, “
Effects of the history term on the motion of rigid spheres in a viscous fluid
,”
Int. J. Multiphase Flow
20
,
547
(
1993
).
16.
O. A.
Druzhinin
, “
Concentration waves and flow modification in a particle-laden circular vortex
,”
Phys. Fluids
6
,
3276
(
1994
).
17.
Z.
Dodin
and
T.
Elperin
, “
On the motion of small heavy particles in an unsteady flow
,”
Phys. Fluids
16
,
3231
(
2004
).
18.
N.
Fenichel
, “
Geometric singular perturbation theory for ordinary differential equations
,”
J. Differ. Equations
31
,
53
(
1979
).
19.
N.
Berglund
and
B.
Gentz
, “
Geometric singular perturbation theory for stochastic differential equations
,”
J. Differ. Equations
191
,
1
(
2003
).
20.
C. F. M.
Coimbra
and
R. H.
Rangel
, “
General solution of the particle momentum equation in unsteady Stokes flows
,”
J. Fluid Mech.
370
,
53
(
1998
).
21.
C. K. R. T.
Jones
, “
A geometric approach to systems with multiple time scales
,” J. Jap. SIAM
7
,
39
(
1997
).
22.
V. I.
Arnol’d
,
Ordinary Differential Equations
, 3rd ed., translated by R. Cooke (
Springer-Verlag
,
New York
,
1992
).
23.
V. M.
Gol’dshtein
and
V. A.
Sobolev
, “
Singularity theory and some problems of functional analysis
,”
Am. Math. Soc. Transl.
153
,
73
(
1992
).
24.
V. I.
Arnol’d
,
Geometrical Methods in the Theory of Ordinary Differential Equations
(
Springer-Verlag
,
New York
,
1992
).
25.
M. M.
Peixoto
, “
Structural stability on two-dimensional manifolds
,”
Topology
2
,
101
(
1962
).
26.
J. M.
Ottino
,
The Kinematics of Mixing: Streching, Chaos, and Transport
(
Cambridge University Press
,
Cambridge
,
1989
).
You do not currently have access to this content.