A gaseous mixture of four constituents undergoing a reversible bimolecular reaction is modeled by means of a Bhatnagar, Gross, and Krook (BGK)-type equation in a flow regime close to chemical equilibrium. In the proposed relaxation method, elastic and chemistry collision terms are approximated separately, introducing different reference distribution functions which assure the correct balance laws. A Chapman-Enskog procedure is applied in order to provide explicitly the transport coefficients of diffusion, shear viscosity and thermal conductivity in dependence on elastic and reactive collision frequencies, mass concentrations of each species and temperature of the whole mixture. The closure of the balance equations is performed at the Navier-Stokes level and plane wave solutions are characterized. For the (H2,Cl,HCl,H) system, transport coefficients, as well as the Prandtl number of the mixture, are represented as functions of the temperature and compared with the inert case in order to discuss the influence of chemical reaction. Moreover, the thermal conductivity for nondiffusive and homogeneous mixtures are compared. For the problem of longitudinal wave propagation the phase velocity, attenuation coefficient and affinity are analyzed as functions of the wave frequency.

1.
B. V.
Alexeev
,
A.
Chikhaoui
, and
I. T.
Grushin
, “
Application of the generalized Chapman-Enskog method to the transport-coefficient calculation in a reacting gas mixture
,”
Phys. Rev. E
49
,
2809
(
1994
).
2.
V.
Giovangigli
,
Multicomponent Flow Modeling
(
Birkhäuser
, Boston,
1999
).
3.
G. M.
Alves
and
G. M.
Kremer
, “
Effects of chemical reactions on the transport coefficients of binary mixtures
,”
J. Chem. Phys.
117
,
2205
(
2002
).
4.
S.
Takata
,
S.
Yasuda
,
K.
Aoki
, and
T.
Shibata
, “
Various transport coefficients occurring in binary gas mixtures and their database
,”
Rarefied Gas Dynamics
, edited by
A. D.
Ketsdever
and
E. P.
Muntz
(
AIP
, Melville, NY,
2003
), p.
106
.
5.
C.
Cercignani
,
Theory and Application of the Boltzmann Equation
(
Scottish Academic
, Edinburgh,
1975
).
6.
P. L.
Bhatnagar
,
E. P.
Gross
, and
K.
Krook
, “
A model for collision processes in gases
,”
Phys. Rev.
94
,
511
(
1954
).
7.
V.
Garzò
and
A.
Santos
,
Kinetic Theory of Gases in Shear Flows
(
Kluwer Academic
, Amsterdam, The Netherlands,
2003
).
8.
M.
Groppi
and
G.
Spiga
, “
A Bhatnagar-Gross-Krook-type approach for chemically reacting gas mixtures
,”
Phys. Fluids
16
,
4273
(
2004
).
9.
R.
Monaco
,
M.
Pandolfi Bianchi
, and
A. J.
Soares
, “
A reactive BGK-type model: influence of elastic collisions and chemical interactions
,”
Rarefied Gas Dynamics
, edited by
M.
Capitelli
(
AIP
, Bari,
2005
), p.
70
.
10.
R.
Monaco
,
M.
Pandolfi Bianchi
, and
A. J.
Soares
, “
BGK-type models in strong reaction and kinetic chemical equilibrium regimes
,”
J. Phys. A
38
,
10413
(
2005
).
11.
P.
Andries
,
K.
Aoki
, and
B.
Perthame
, “
A consistent BGK-type model for gas mixtures
,”
J. Stat. Phys.
106
,
993
(
2002
).
12.
V.
Garzò
,
A.
Santos
, and
J. J.
Brey
, “
A kinetic model for a multicomponent gas
,”
Phys. Fluids A
1
,
380
(
1989
).
13.
P.
Andries
,
P.
Le Tallec
,
J. P.
Perlat
, and
B.
Perthame
, “
The Gaussian-BGK model of Boltzmann equation with small Prandtl number
,”
Eur. J. Mech. B/Fluids
19
,
813
(
2000
).
14.
L.
Mieussens
and
H.
Struchtrup
, “
Numerical comparison of Bhatanagar-Gross-Krook models with proper Prandtl number
,”
Phys. Fluids
16
,
2797
(
2004
).
15.
R. D.
Present
, “
Note on the simple collision theory of bimolecular reactions
,”
Proc. Natl. Acad. Sci. U.S.A.
41
,
415
(
1955
).
16.
A.
Rossani
and
G.
Spiga
, “
A note on the kinetic theory of chemically reacting gases
,”
Physica A
272
,
563
(
1999
).
17.
I.
Prigogine
and
R.
Defay
,
Chemical Thermodynamics
(
Longman
, London,
1973
).
18.
F. J.
McCormack
, “
Construction of linearized kinetic models for gaseous mixtures and molecular gases
,”
Phys. Fluids
16
,
2095
(
1973
).
19.
S.
Chapman
and
T. G.
Cowling
,
The Mathematical Theory of Non-Uniform Gases
, 3rd ed. (
Cambridge University Press
, Cambridge,
1970
).
20.
B.
Shizgal
and
M.
Karplus
, “
Nonequilibrium contributions to the rate of reactions II. Isolated multicomponent systems
,”
J. Chem. Phys.
54
,
4345
(
1971
).
21.
P. W.
Atkins
,
Physical Chemistry
, 5th. Edition (
Oxford University Press
, Oxford,
1997
).
22.
G. M.
Alves
and
G. M.
Kremer
, “
Transport coefficients of a single reactive gas
,”
Rarefied Gas Dynamics
, edited by
M.
Capitelli
(
AIP
, Bari,
2005
), p.
1091
.
23.
W.
Nernst
, “
Chemisches gleichgewicht und temperaturgefälle
,”
Festschrift Ludwig Boltzmann
(
J. A. Barth Verlag
, Leipzig,
1904
), p.
904
.
24.
J.
Meixner
, “
Zur Theorie der Wärmeleitfähigkeit reagierender fluider Mischungen
,”
Z. Naturforsch. A
7A
,
553
(
1952
).
25.
R.
Haase
, “
Zur Thermodynamik der irreversiblen Prozesse III
,”
Z. Naturforsch. A
8A
,
729
(
1953
).
26.
W.
Marques
, Jr.
,
G. M.
Alves
, and
G. M.
Kremer
, “
Light scattering and sound propagation in a chemically reacting binary gas mixture
,”
Physica A
323
,
401
(
2003
).
27.
Y.
Sone
,
K.
Aoki
, and
T.
Doi
, “
Kinetic theory analysis of gas flows condensing on a plane condensed phase: case of a mixture of a vapor and a noncondensable gas
,”
Transp. Theory Stat. Phys.
21
,
297
(
1992
).
28.
C.
Marín
,
J. M.
Montanero
, and
V.
Garzò
, “
Kinetic models for diffusion generated by an external force
,”
Physica A
225
,
235
(
1996
).
29.
V.
Garzò
and
M.
López de Haro
, “
Kinetic models for diffusion in shear flow
,”
Phys. Fluids A
4
,
1057
(
1992
).
30.
A.
Santos
and
V.
Garzò
, “
Self-diffusion in a dilute gas under heat and momentum transport
,”
Phys. Rev. A
46
,
3276
(
1992
).
You do not currently have access to this content.