The stability of channel flow modulated by oscillatory wall suction/blowing is investigated using linear stability analysis together with Floquet theory based on numerical calculation and asymptotic expansion. Two typical flows with either the driven pressure gradient or the flow rate constant are considered. The basic flows subject to the oscillatory wall suction/blowing are time periodic with multiple frequency components. The stability problem is formulated into a time-dependent eigenvalue problem, and the Floquet exponents are obtained using a spectral collocation method. It is revealed that the periodic wall suction/blowing induces the Stokes layer, which interacts with the disturbance shear wave and eventually affects the disturbance growth. Results show that the modulations of the oscillatory wall suction/blowing to the channel flows have a destabilizing effect and the similar stability characteristics of both the typical flows occur. Critical Reynolds numbers and wave numbers are predicted for a wide range of parameters. Asymptotic expansions of the growth rate at small amplitude Δ of the oscillatory wall suction/blowing are developed. The correction terms for the growth rate occur in O(Δ2) and are positive, indicating that the flow is destabilized. It is found that the destabilizing effect is mainly connected to the steady corrections of the mean flow profile in the O(Δ2) terms.

1.
S. A.
Orszag
, “
Accurate solution of the Orr-Sommerfeld stability equation
,”
J. Fluid Mech.
50
,
689
(
1971
).
2.
A.
Cabal
,
J.
Szumbarski
, and
J. M.
Floryan
, “
Stability of flow in a wavy channel
,”
J. Fluid Mech.
457
,
191
(
2002
).
3.
J. M.
Floryan
, “
Stability of wall-bounded shear layers in the presence of simulated distributed surface roughness
,”
J. Fluid Mech.
335
,
29
(
1997
).
4.
J.
Luo
and
X.
Wu
, “
Influence of small imperfections on the stability of plane Poiseuille flow: A theoretical model and direct numerical simulation
,”
Phys. Fluids
16
,
2852
(
2004
).
5.
J. M.
Floryan
, “
Vortex instability in a diverging-converging channel
,”
J. Fluid Mech.
482
,
17
(
2003
).
6.
J. M.
Floryan
,
J.
Szumbarski
, and
X.
Wu
, “
Stability of flow in a channel with vibrating walls
,”
Phys. Fluids
14
,
3927
(
2002
).
7.
S.
Selvarajan
,
E. G.
Tulapurkara
, and
V.
Vasanta Ram
, “
Stability characteristics of wavy walled channel flows
,”
Phys. Fluids
11
,
579
(
1999
).
8.
H.
Zhou
,
R. J.
Martinuzzi
,
R. E.
Khayat
,
A. G.
Straatman
, and
E.
Abu-Ramadan
, “
Influence of wall shape on vortex formation in modulated channel flow
,”
Phys. Fluids
15
,
3114
(
2003
).
9.
J. H.
Fransson
and
P. H.
Alfredsson
, “
On the hydrodynamic stability of channel flow with cross flow
,”
Phys. Fluids
15
,
436
(
2003
).
10.
J. J.
Szumbarski
and
J. M.
Floryan
, “
Channel flow instability in presence of weak distributed surface suction
,”
AIAA J.
38
,
372
(
2000
).
11.
T. R.
Bewley
and
S.
Liu
, “
Optimal and robust control and estimation of linear paths to transition
,”
J. Fluid Mech.
365
,
305
(
1998
).
12.
B. F.
Farrel
and
P. J.
Ioannou
, “
Turbulence suppression by active control
,”
Phys. Fluids
8
,
1257
(
1996
).
13.
S. S.
Joslin
,
J. L.
Speyer
, and
J.
Kim
,“
A systems theory approach to the feedback stabilization of infinitesimal and finite-amplitude disturbances in plane Poiseuille flow
,”
J. Fluid Mech.
332
,
157
(
1997
).
14.
T.
Bewley
,
P.
Moin
, and
R.
Temam
, “
DNS-based predictive control of turbulence: an optimal benchmark for feedback algorithms
,”
J. Fluid Mech.
447
,
179
(
2001
).
15.
M.
Högberg
,
T. R.
Bewley
, and
D. S.
Henningson
, “
Relaminarization of Reτ=100, turbulence using gain scheduling and linear state-feedback control
,”
Phys. Fluids
15
,
3572
(
2003
).
16.
H.
Choi
,
P.
Moin
, and
J.
Kim
, “
Active turbulence control for drag reduction in wall bounded flows
,”
J. Fluid Mech.
262
,
75
(
1994
).
17.
Y.
Sumitani
and
N.
Kasagi
, “
Direct numerical simulation of turbulent transport with uniform wall injection and suction
,”
AIAA J.
33
,
1220
(
1995
).
18.
T. H.
Hughes
and
W. H.
Reid
, “
On the stability of the asymptotic suction boundary-layer profile
,”
J. Fluid Mech.
23
,
715
(
1965
).
19.
L. M.
Hocking
, “
Non-linear instability of the asymptotic suction velocity profile
,”
Q. J. Mech. Appl. Math.
28
,
341
(
1975
).
20.
F. D.
Hains
, “
Stability of plane Couette-Poiseuille flow with crossflow
,”
Phys. Fluids
14
,
1620
(
1971
).
21.
D. M.
Sheppard
, “
Hydrodynamic stability of the flow between parallel porous walls
,”
Phys. Fluids
15
,
241
(
1972
).
22.
S. H.
Davis
, “
The stability of time-periodic flows
,”
Annu. Rev. Fluid Mech.
8
,
57
(
1976
).
23.
C. E.
Grosch
and
H.
Salwen
,“
The stability of steady and time-dependent plane Poiseuille flow
,”
J. Fluid Mech.
34
,
177
(
1968
).
24.
D. M.
Herbert
, “
The energy balance in modulated plane Poiseuille flow
,”
J. Fluid Mech.
56
,
73
(
1972
).
25.
C. C.
Lin
,
The Theory of Hydrodynamic Stability
(
Cambridge University Press
,
Cambridge
,
1954
).
26.
P.
Hall
, “
The stability of Poiseuille flow modulated at high frequencies
,”
Proc. R. Soc. London, Ser. A
344
,
453
(
1975
).
27.
C. H.
von Kerczek
,“
The instability oscillatory plane Poiseuille flow
,”
J. Fluid Mech.
116
,
91
(
1982
).
28.
B. A.
Singer
,
J. H.
Ferziger
, and
H. L.
Reed
, “
Numerical simulations of transition in oscillatory plane channel flow
,”
J. Fluid Mech.
208
,
45
(
1989
).
29.
A. G.
Straatman
,
R. E.
Khayat
,
E.
Haj-Qasem
, and
D. A.
Steinman
, “
On the hydrodynamic stability of pulsatile flow in a plane channel
,”
Phys. Fluids
14
,
1938
(
2002
).
30.
E. A.
Coddington
and
N.
Levenson
,
Theory of Ordinary Differential Equations
(
McGraw-Hill
,
New York
,
1955
).
31.
C.
von Kerczek
and
S. H.
Davis
, “
Linear stability theory of oscillatory Stokes layers
,”
J. Fluid Mech.
62
,
753
(
1974
).
32.
J. A. C.
Weideman
and
S. C.
Reddy
, “
A MATLAB differentiation matrix suite
,”
ACM Trans. Math. Softw.
26
,
465
(
2000
).
33.
M.
Högberg
,
T. R.
Bewley
, and
D. S.
Henningson
, “
Linear feedback control and estimation of transition in plane channel flow
,”
J. Fluid Mech.
481
,
149
(
2003
).
34.
A.
Bottaro
,
P.
Corbett
, and
P.
Luchini
, “
The effect of base flow variation on flow stability
,”
J. Fluid Mech.
476
,
293
(
2003
).
35.
A. J.
Pearlstein
, “
Effect of rotation on the stability of a doubly diffusive fluid layer
,”
J. Fluid Mech.
103
,
389
(
1981
).
36.
A. C.
Or
, “
Finite-wavelength instability in a horizontal liquid layer on an oscillating plane
,”
J. Fluid Mech.
335
,
213
(
1997
).
You do not currently have access to this content.