On a domain enclosed by no-slip boundaries, two-dimensional, geostrophic flows have been studied by numerical simulations of the Navier-Stokes equation with the β-plane approximation at intermediate Reynolds numbers and a range of values for β. The β effect causes a refinement of the flow structures, and the presence of basin modes has been revealed by means of frequency spectra. The presence and apparent stability of basin modes on a domain enclosed by no-slip boundaries is a rather surprising observation, because these modes are solutions of the inviscid flow equations on a bounded domain (with free-slip boundaries). To understand the persistence of these basin modes, the viscous boundary layers near the no-slip walls have been investigated. The mean flow in forced simulations shows a zonal band structure, much unlike the regular Fofonoff-like solution observed when free-slip boundary conditions are used.

1.
R. H.
Kraichnan
, “
Inertial ranges in two-dimensional turbulence
,”
Phys. Fluids
10
,
1417
(
1967
).
2.
M.
Hossain
,
W. H.
Matthaeus
, and
D.
Montgomery
, “
Long-time state of inverse cascades in the presence of a maximum length scale
,”
J. Plasma Phys.
30
,
479
(
1983
).
3.
L. M.
Smith
and
V.
Yakhot
, “
Bose condensation and small-scale structure generation in a random force driven 2D turbulence
,”
Phys. Rev. Lett.
71
,
352
(
1993
).
4.
G. K.
Batchelor
, “
Computation of the energy spectrum in homogeneous two-dimensional turbulence
,”
Phys. Fluids
Suppl. II
12
,
223
(
1969
).
5.
J.
Pedlosky
,
Geophysical Fluid Dynamics
(
Spinger-Verlag
,
Berlin
,
1987
).
6.
P. K.
Kundu
,
Fluid Mechanics
(
Academic
,
New York
,
1990
).
7.
A. E.
Gill
,
Atmosphere-Ocean Dynamics
(
Academic
,
New York
,
1982
).
8.
C. G.
Rossby
, “
On the propagation of frequencies and energy in certain types of oceanic and atmospheric waves
,”
J. Meteorol. Soc. Jpn.
2
,
187
(
1945
).
9.
P. B.
Rhines
, “
Waves and turbulence on the beta-plane
,”
J. Fluid Mech.
69
,
417
(
1975
).
10.
G. P.
Williams
, “
Planetary circulations: 2. The Jovian quasi-geostrophic regime
,”
J. Atmos. Sci.
36
,
932
(
1994
).
11.
T.
Nozawa
and
S.
Yoden
, “
Formation of zonal band structures in forced two-dimensional turbulence on a rotating sphere
,”
Phys. Fluids
9
,
2081
(
1997
).
12.
W. H.
Matthaeus
and
D.
Montgomery
, “
Selective decay hypothesis at high mechanical and magnetic Reynolds numbers
,”
Ann. N.Y. Acad. Sci.
357
,
203
(
1980
).
13.
J. C.
McWilliams
, “
The emergence of coherent vortices in turbulent flow
,”
J. Fluid Mech.
146
,
21
(
1984
).
14.
P. B.
Rhines
, “
Geostrophic turbulence
,”
Annu. Rev. Fluid Mech.
11
,
401
(
1979
).
15.
H.
Huang
and
W. A.
Robinson
, “
Two-dimensional turbulence and persistent zonal jets in a global barotropic model
,”
J. Atmos. Sci.
55
,
611
(
1998
).
16.
M. S.
Longuet-Higgins
, “
Planetary waves on a rotating sphere
,”
Proc. R. Soc. London, Ser. A
279
,
446
(
1964
).
17.
H. J. H.
Clercx
and
G. J. F.
van Heijst
, “
Energy spectra for decaying 2D turbulence in a bounded domain
,”
Phys. Rev. Lett.
85
,
306
(
2000
).
18.
J. H.
LaCasce
, “
On turbulence and normal modes in a basin
,”
J. Mar. Res.
60
,
431
(
2002
).
19.
H. J. H.
Clercx
, “
A spectral solver for the Navier-Stokes equations in the velocity-vorticity formulation for flows with two nonperiodic directions
,”
J. Comput. Phys.
137
,
186
(
1997
).
20.
C.
Canuto
,
M. Y.
Hussaini
,
A.
Quarteroni
, and
T. A.
Zang
,
Spectral Methods in Fluid Dynamics
(
Spinger-Verlag
,
Berlin
,
1987
).
21.
D. K.
Lilly
, “
Numerical simulations of two-dimensional turbulence
,”
Phys. Fluids
12
,
240
(
1969
).
22.
M. E.
Maltrud
and
G. K.
Vallis
, “
Energy spectra and coherent structures in forced two-dimensional turbulence and beta-plane turbulence
,”
J. Fluid Mech.
228
,
321
(
1991
).
23.
H. J. H.
Clercx
,
S. R.
Maassen
, and
G. J. F.
van Heijst
, “
Spontaneous spin-up during the decay of 2D turbulence in a square container with rigid boundaries
,”
Phys. Rev. Lett.
80
,
5129
(
1998
).
24.
H. J. H.
Clercx
,
A. H.
Nielsen
,
D. J.
Torres
, and
E. A.
Coutsias
, “
Two-dimensional turbulence in square and circular domains with no-slip walls
,”
Eur. J. Mech. B/Fluids
20
,
557
(
2001
).
25.
D.
Molenaar
,
H. J. H.
Clercx
, and
G. J. F.
van Heijst
, “
Spin-up of angular momentum in forced 2D turbulence in a square Dirichlet domain
,”
Physica D
196
,
329
(
2004
).
26.
N. P.
Fofonoff
, “
Steady flow in a frictionless homogeneous ocean
,”
J. Mar. Res.
13
,
254
(
1954
).
27.
R.
Salmon
,
H. G.
Holloway
, and
M. C.
Hendershott
, “
The equilibrium statistical mechanics of simple quasigeostrophic models
,”
J. Fluid Mech.
75
,
691
(
1976
).
28.
J.
Wang
and
G. K.
Vallis
, “
Emergence of Fofonoff states in inviscid and viscous ocean circulation models
,”
J. Mar. Res.
52
,
83
(
1994
).
29.
J. C.
Marshall
, “
Eddy-mean flow interaction in a barotropic ocean model
,”
Q. J. R. Meteorol. Soc.
110
,
573
(
1984
).
You do not currently have access to this content.