The viscous damping of progressive, two-layer interfacial waves is examined theoretically and experimentally. Traditional water wave theory is modified to derive the damping rates associated with interfacial wave propagation in a rectangular channel. The individual wave damping contributions are considered from the bottom, side, and interfacial boundary layers, as well as the damping associated with the wave-induced velocities within the homogenous fluid layers. These results show that for most laboratory-scale experiments, sidewall friction plays the dominant role in wave damping. Laboratory experiments are conducted to verify the damping rates for progressive two-layer internal waves in a rectangular channel. Experiments are conducted on both monochromatic and polychromatic wave trains. The results of these experiments are in good agreement with the derived damping rates, but show poorer agreement for large-amplitude waves when the sidewall boundary layers become turbulent. More work is necessary to quantify the damping associated with nonlinear internal waves in order to allow for accurate interpretation of the results from laboratory experiments.

1.
W.
Munk
and
C.
Wunsch
, “
Abyssal recipes II: Energetics of tidal and wind mixing
,”
Deep-Sea Res., Part I
45
,
1977
(
1998
).
2.
C.
Wunsch
and
R.
Ferrari
, “
Vertical mixing, energy, and the general circulation of the oceans
,”
Annu. Rev. Fluid Mech.
36
,
281
(
2004
).
3.
D. L.
Rudnick
,
T. J.
Boyd
,
R. E.
Brainard
,
G. S.
Carter
,
G. D.
Egbert
,
M. C.
Gregg
,
P. E.
Holloway
,
J. M.
Klymak
,
E.
Kunze
,
C. M.
Lee
,
M. D.
Levine
,
D. S.
Luther
,
J. P.
Martin
,
M. A.
Merrifield
,
J. N.
Moum
,
J. D.
Nash
,
R.
Pinkel
,
L.
Rainville
, and
T. B.
Sanford
, “
From tides to mixing along the Hawaiian ridge
,”
Science
301
,
355
(
2003
).
4.
B. R.
Sutherland
, “
Finite-amplitude internal wave packet dispersion and breaking
,”
J. Fluid Mech.
429
,
343
(
2001
).
5.
O. B.
Fringer
and
R. L.
Street
, “
The dynamics of breaking progressive interfacial waves
,”
J. Fluid Mech.
494
,
319
(
2003
).
6.
H.
Michallet
and
G. N.
Ivey
, “
Experiments on mixing due to internal solitary waves breaking on uniform slopes
,”
J. Geophys. Res.
104
,
13467
(
1999
).
7.
C. D.
Troy
and
J. R.
Koseff
, “
The instability and breaking of long internal waves
,”
J. Fluid Mech.
543
,
107
(
2005
).
8.
A. D.
McEwan
, “
Internal mixing in stratified fluids
,”
J. Fluid Mech.
128
,
59
(
1983
).
9.
G. N.
Ivey
and
R. I.
Nokes
, “
Vertical mixing due to breaking waves on sloping boundaries
,”
J. Fluid Mech.
204
,
479
(
1989
).
10.
D. N.
Slinn
and
J. J.
Riley
, “
Turbulent mixing in the oceanic boundary layer caused by internal wave reflection from sloping terrain
,”
Dyn. Atmos. Oceans
24
,
51
(
1996
).
11.
F.
Wessels
and
K.
Hutter
, “
Interaction of internal waves with a topographic sill in a two-layered fluid
,”
J. Phys. Oceanogr.
26
,
5
(
1996
).
12.
R. H.
Spigel
and
J.
Imberger
, “
The classification of mixed-layer dynamics in lakes of small to medium size
,”
J. Phys. Oceanogr.
10
,
1104
(
1980
).
13.
D. A.
Horn
,
J.
Imberger
, and
G. N.
Ivey
, “
The degeneration of large-scale interfacial gravity waves in lakes
,”
J. Fluid Mech.
434
,
181
(
2001
).
14.
L.
Boegman
,
G. N.
Ivey
, and
J.
Imberger
, “
The energetics of large-scale internal wave degeneration in lakes
,”
J. Fluid Mech.
531
,
159
(
2005
).
15.
L. A.
Ostrovsky
and
Y. A.
Stepanyants
, “
Internal solitons in laboratory experiments: Comparison with theoretical models
,”
Chaos
15
,
037111
(
2005
).
16.
G. H.
Keulegan
, “
Gradual damping of solitary waves
,”
J. Raman Spectrosc.
40
,
480
(
1948
).
17.
C. G.
Koop
and
G.
Butler
, “
An investigation of internal solitary waves in a two-fluid system
,”
J. Fluid Mech.
112
,
225
(
1981
).
18.
C.
Leone
,
H.
Segur
, and
J. L.
Hammack
, “
Viscous decay of long internal solitary waves
,”
Phys. Fluids
25
,
942
(
1982
).
19.
J. R.
Apel
,
J. R.
Holbrock
,
A. K.
Liu
, and
J. J.
Tsai
, “
The Sulu Sea internal soliton experiment
,”
J. Phys. Oceanogr.
15
,
1625
(
1985
).
20.
A. K.
Liu
,
J. R.
Holbrook
, and
J. R.
Apel
, “
Nonlinear internal wave evolution in the Sulu Sea
,”
J. Phys. Oceanogr.
15
,
1613
(
1985
).
21.
T. P.
Stanton
and
L. A.
Ostrovsky
, “
Observations of highly nonlinear internal solitons over the continental shelf
,”
Geophys. Res. Lett.
25
,
2695
(
1998
).
22.
D. A.
Horn
,
J.
Imberger
,
G. N.
Ivey
, and
L. G.
Redekopp
, “
A weakly nonlinear model of long internal waves in closed basins
,”
J. Fluid Mech.
467
,
269
(
2002
).
23.
S. A.
Thorpe
, “
On the shape of progressive internal waves
,”
Philos. Trans. R. Soc. London, Ser. A
263
,
563
(
1968
).
24.
R. G.
Dean
and
R. A.
Dalrymple
,
Water Wave Mechanics for Engineers and Scientists
(
World Scientific
,
Singapore
,
1991
).
25.
C. C.
Mei
,
The Applied Dynamics of Ocean Surface Waves
(
World Scientific
,
Singapore
,
1989
).
26.
O. M.
Phillips
,
Dynamics of the Upper Ocean
(
Cambridge University Press
,
Cambridge
,
1966
).
27.
P.
Kundu
,
Fluid Mechanics
(
Academic
,
New York
,
1990
).
28.
J. W.
Kamphuis
, “
Friction factor under oscillatory waves
,”
J. Waterw., Harbors Coastal Eng. Div., Am. Soc. Civ. Eng.
101
,
135
(
1975
).
29.
C. D.
Troy
and
J. R.
Koseff
, “
The generation and quantitative visualization of breaking internal waves
,”
Exp. Fluids
38
,
549
(
2005
).
30.
H.
Michallet
and
E.
Barthelemy
, “
Ultrasonic probes and data processing to study interfacial solitary waves
,”
Exp. Fluids
22
,
380
(
1997
).
31.
C. D.
Troy
, “
The breaking and mixing of progressive internal waves
,” Ph.D. thesis,
Stanford University
,
2003
.
32.
S. A.
Thorpe
, “
On wave interactions in a stratified fluid
,”
J. Fluid Mech.
24
,
737
(
1966
).
33.
R. E.
Davis
and
A.
Acrivos
, “
The stability of oscillatory internal waves
,”
J. Fluid Mech.
30
,
723
(
1967
).
You do not currently have access to this content.