We report results from three-dimensional numerical simulations of the incompressible flow in a vertical pipe of circular cross-section discharging from a cylindrical container. Natural Coriolis forces due to Earth rotation trigger the instability of the axisymmetric flow, and nonlinear spiral waves with azimuthal wave number n=3 are formed above a critical Reynolds number based on the pipe flow rate (ReQ). We characterize this critical Reynolds number as a function of the Coriolis parameter (F), that is proportional to the square of the radius of the container. As a difference with previous numerical works on nonlinear instabilities and transition in a pipe flow, here the nonlinear disturbances needed to trigger the instabilities are not artificially introduced inside the pipe flow, but naturally produced by Coriolis forces, the amplitude of these disturbances being characterized by a nondimensional Coriolis parameter. We find that the pipe flow can be unstable for ReQ as low as 300 for the largest value of F considered. We also discuss the relevance of the residual swirl introduced by natural Coriolis forces in triggering the nonlinear traveling waves.

1.
H.
Faisst
and
B.
Eckhardt
,“
Traveling waves in pipe flow
, “
Phys. Rev. Lett.
91
,
224502
(
2003
).
2.
H.
Wedin
and
R. R.
Kerswell
, “
Exact coherent structures in pipe flow: travelling wave solutions
,”
J. Fluid Mech.
508
,
333
(
2004
).
3.
B.
Hof
,
C. W. H.
van Dorne
,
J.
Westerweel
,
F. T. M.
Nieuwstadt
,
H.
Faisst
,
B.
Eckhardt
,
H.
Wedin
,
R. R.
Kerswell
, and
F.
Waleffe
, “
Experimental observation of nonlinear traveling waves in turbulent pipe flow
,“
Science
305
,
1594
(
2004
).
4.
B.
Ma
,
C. W. H.
van Doorne
,
Z.
Zhang
, and
F. T. M.
Nieuwstadt
, “
On the spatial evolution of a wall-imposed periodic disturbance in pipe Poiseuille flow at Re=3000. Part 1. subcritical disturbance
,”
J. Fluid Mech.
398
,
181
(
1999
).
5.
G.
Han
,
A.
Tumin
, and
I.
Wygnanski
, “
Laminar-turbulent transition in Poiseuille pipe flow subjected to periodic perturbation emanating from the wall. Part 2. Late stage of transition
,”
J. Fluid Mech.
419
,
1
(
2000
).
6.
B.
Hof
,
A.
Juel
, and
T.
Mullin
, “
Scaling of the turbulence transition threshold in a pipe
,”
Phys. Rev. Lett.
91
,
244502
(
2003
).
7.
J.
Reuter
and
D.
Rempfer
, “
Analysis of pipe flow transition. Part I. Direct numerical simulation
,”
Theor. Comput. Fluid Dyn.
17
,
273
(
2004
).
8.
R.
Fernandez-Feria
and
E.
Sanmiguel-Rojas
, “
An explicit projection method for solving incompressible flows driven by a pressure difference
,”
Comput. Fluids
33
,
463
(
2004
).
9.
E.
Sanmiguel-Rojas
and
R.
Fernandez-Feria
, “
Nonlinear waves in the pressure driven flow in a finite rotating pipe
,”
Phys. Fluids
17
,
014104
(
2005
).
10.
E.
Sanmiguel-Rojas
,
J.
Ortega-Casanova
,
C.
del Pino
, and
R.
Fernandez-Feria
, “
A cartesian grid finite-difference method for 2d incompressible viscous flows in irregular geometries
,”
J. Comput. Phys.
204
,
302
(
2005
).
11.
M. A.
Herrada
,
M.
Perez-Saborid
, and
A.
Barrero
, “
Nonparallel local spatial stability analysis of pipe entrance swirling flows
,”
Phys. Fluids
16
,
2147
(
2004
).
12.
M. J.
Landman
, “
On the generation of helical waves in circular pipe flow
,”
Phys. Fluids A
2
,
738
(
1990
).
13.
P. A.
Mackrodt
, “
Stability of Hagen-Poiseuille flow with superimposed rigid rotation
,”
J. Fluid Mech.
73
,
153
(
1976
).
You do not currently have access to this content.