A thin thread of viscous fluid that falls on a moving belt acts like a fluid-mechanical “sewing machine,” exhibiting a rich variety of “stitch” patterns including meanders, translated coiling, slanted loops, braiding, figures-of-eight, W-patterns, side kicks, and period-doubled patterns. Using a numerical linear stability analysis, we determine the critical belt speed and oscillation frequency of the first bifurcation, at which a steady dragged viscous thread becomes unstable to transverse oscillations or “meandering.” The predictions of the stability analysis agree closely with the experimental measurements of Chiu-Webster and Lister [J. Fluid Mech.569, 89 (2006)]. Moreover, the critical belt speed and onset frequency for meandering are nearly identical to the contact-point migration speed and angular frequency, respectively, of steady coiling of a viscous thread on a stationary surface, implying a remarkable degree of dynamical similarity between the two phenomena.

1.
G.
Barnes
and
R.
Woodcock
, “
Liquid rope-coil effect
,”
Am. J. Phys.
26
,
205
(
1958
).
2.
G.
Barnes
and
J.
MacKenzie
, “
Height of fall versus frequency in liquid rope-coil effect
,”
Am. J. Phys.
27
,
112
(
1959
).
3.
G. I.
Taylor
, “
Instability of jets, threads and sheets of viscous fluid
,” in
Proceedings of the 12th International Congress on Applied Mechanics
(
Springer
,
Berlin
,
1968
).
4.
J. O.
Cruickshank
, “
Viscous fluid buckling: A theoretical and experimental analysis with extensions to general fluid stability
,” Ph.D. thesis,
Iowa State University
, Ames, Iowa (
1980
).
5.
J. O.
Cruickshank
and
B. R.
Munson
, “
Viscous fluid buckling of plane and axisymmetric jets
,”
J. Fluid Mech.
113
,
221
(
1981
).
6.
H. E.
Huppert
, “
The intrusion of fluid mechanics into geology
,”
J. Fluid Mech.
173
,
557
(
1986
).
7.
R. W.
Griffiths
and
J. S.
Turner
, “
Folding of viscous plumes impinging on a density or viscosity interface
,”
Geophys. J. (Oxford)
95
,
397
(
1988
).
8.
L.
Mahadevan
,
W. S.
Ryu
, and
A. D. T.
Samuel
, “
Fluid ‘rope trick’ investigated
,”
Nature
392
,
140
(
1998
).
9.
M.
Maleki
,
M.
Habibi
,
R.
Golestanian
,
N. M.
Ribe
, and
D.
Bonn
, “
Liquid rope coiling on a solid surface
,”
Phys. Rev. Lett.
93
,
214502
(
2004
).
10.
J. O.
Cruickshank
, “
Low-Reynolds-number instabilities in stagnating jet flows
,”
J. Fluid Mech.
193
,
111
(
1988
).
11.
B.
Tchavdarov
,
A. L.
Yarin
, and
S.
Radev
, “
Buckling of thin liquid jets
,”
J. Fluid Mech.
253
,
593
(
1993
).
12.
L.
Mahadevan
,
W. S.
Ryu
, and
A. D. T.
Samuel
, “
Correction: Fluid ‘rope trick’ investigated
,”
Nature
403
,
502
(
2000
).
13.
N. M.
Ribe
, “
Coiling of viscous jets
,”
Proc. R. Soc. London, Ser. A
460
,
3223
(
2004
).
14.
N. M.
Ribe
,
H. E.
Huppert
,
M.
Hallworth
,
M.
Habibi
, and
D.
Bonn
, “
Multiple coexisting states of liquid rope coiling
,”
J. Fluid Mech.
555
,
275
(
2006
).
15.
N. M.
Ribe
,
M.
Habibi
, and
D.
Bonn
, “
Stability of liquid rope coiling
,”
Phys. Fluids
18
,
084102
(
2006
).
16.
S.
Chiu-Webster
and
J. R.
Lister
, “
The fall of a viscous thread onto a moving surface: A ‘fluid-mechanical sewing machine’
,“
J. Fluid Mech.
569
,
89
(
2006
).
17.
E. T.
Whittaker
,
A Treatise on the Analytical Dynamics of Particles and Rigid Bodies
(
Dover
,
New York
,
1944
).
18.
E. J.
Doedel
,
H. B.
Keller
, and
J. P.
Kernevez
, “
Numerical analysis and control of bifurcation problems, Part I
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
1
,
493
(
1991
).
19.
E. J.
Doedel
,
H. B.
Keller
, and
J. P.
Kernevez
, “
Numerical analysis and control of bifurcation problems, Part II
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
1
,
745
(
1991
).
20.
H. B.
Keller
,
Numerical Methods for Two-Point Boundary-Value Problems
(
Dover
,
New York
,
1992
).
You do not currently have access to this content.