This paper reviews basic results and recent developments in the field of small-scale gaseous hydrodynamics which has received significant attention in connection with small-scale science and technology. We focus on the modeling challenges arising from the breakdown of the Navier-Stokes description, observed when characteristic lengthscales become of the order of, or smaller than, the molecular mean free path. We discuss both theoretical results and numerical methods development. Examples of the former include the limit of applicability of the Navier-Stokes constitutive laws, the concept of second-order slip and the appropriate form of such a model, and how to reconcile experimental measurements of slipping flows with theory. We also review a number of recently developed theoretical descriptions of canonical nanoscale flows of engineering interest. On the simulation front, we review recent progress in characterizing the accuracy of the prevalent Boltzmann simulation method known as direct simulation Monte Carlo. We also present recent variance reduction ideas which address the prohibitive cost associated with the statistical sampling of macroscopic properties in low-speed flows.

1.
C. M.
Ho
and
Y. C.
Tai
, “
Micro-electro-mechanical systems (MEMS) and fluid flows
,”
Annu. Rev. Fluid Mech.
30
,
579
(
1998
).
2.
G. E.
Karniadakis
and
A.
Beskok
,
Microflows: Fundamentals and Simulation
(
Springer
,
New York
,
2001
).
3.
M.
Gad-el-Hak
, “
Flow physics
,” in
Handbook of MEMS
, edited by
M.
Gad-el-Hak
(
CRC
,
Boca Raton, FL
,
2002
).
4.
W. G.
Vincenti
and
C. H.
Kruger
,
Introduction to Physical Gas Dynamics
(
Krieger
,
Malabar, FL
,
1965
).
5.
S.
Chapman
and
T. G.
Cowling
,
The Mathematical Theory of Non-Uniform Gases
(
Cambridge University Press
,
Cambridge, England
,
1970
).
6.
Y.
Sone
,
Kinetic Theory and Fluid Dynamics
(
Birkhäuser
,
Boston
,
2002
).
7.
C.
Cercignani
,
The Boltzmann Equation and Its Applications
(
Springer-Verlag
,
New York
,
1988
).
8.
H.
Grad
, “
Singular and nonuniform limits of solutions of the Boltzmann equation
,” in
Transport Theory, Proceedings of the 20th Symposium in Applied Mathematics, New York, NY, 1967
,
SIAM-AMS Proceedings
Vol.
1
, edited by
R.
Bellman
,
G.
Birkhoff
, and
I.
Abu-Shumays
(
American Mathematical Society
,
Providence
,
1969
).
9.
G. A.
Bird
,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
(
Clarendon
,
Oxford
,
1994
).
10.
P. L.
Bhatnagar
,
E. P.
Gross
, and
M.
Krook
, “
A model for collision processes in gases
,”
Phys. Rev.
94
,
511
(
1954
).
11.
F. J.
Alexander
and
A. L.
Garcia
, “
The direct simulation Monte Carlo method
,”
Comput. Phys.
11
,
588
(
1997
).
12.
M. N.
Kogan
,
Rarefied Gas Dynamics
(
Plenum
,
New York
,
1969
).
13.
E.
Kennard
,
Kinetic Theory of Gases
(
McGraw-Hill
,
New York
,
1938
).
14.
F.
Sharipov
and
V.
Seleznev
, “
Data on internal rarefied gas flows
,”
J. Phys. Chem. Ref. Data
27
,
657
(
1998
).
15.
C.
Cercignani
and
M.
Lampis
, “
Kinetic models for gas-surface interactions
,”
Transp. Theory Stat. Phys.
1
,
101
(
1971
).
16.
C.
Cercignani
,
P.
Foresti
, and
F.
Sernagiotto
, “
Dependence of the slip coefficient on the form of the collision frequency
,”
Nuovo Cimento B
57
,
297
(
1968
).
17.
T. E.
Wenski
,
T.
Olson
,
C. T.
Rettner
, and
A. L.
Garcia
, “
Simulations of air slider bearings with realistic gas-surface scattering
,”
J. Tribol.
120
,
639
(
1998
).
18.
T.
Ohwada
,
Y.
Sone
, and
K.
Aoki
, “
Numerical analysis of the Poiseuille and thermal transpiration flows between parallel plates on the basis of the Boltzmann equation for hard-sphere molecules
,”
Phys. Fluids A
1
,
2042
(
1989
).
19.
C.
Cercignani
, “
The Kramers problem for a not completely diffusing wall
,”
J. Math. Anal. Appl.
10
,
568
(
1965
).
20.
S. K.
Loyalka
, “
Momentum and temperature-slip coefficients with arbitrary accommodation at the surface
,”
J. Chem. Phys.
48
,
5432
(
1968
).
21.
Y.
Sone
, “
Kinetic theory analysis of linearized Rayleigh problem
,”
J. Phys. Soc. Jpn.
19
,
1463
(
1964
).
22.
C.
Cercignani
, “
Higher order slip according to the linearized Boltzmann equation
,” Institute of Engineering Research Report No. AS-64–19,
University of California
, Berkeley,
1964
.
23.
E. B.
Arkilic
,
K. S.
Breuer
, and
M. A.
Schmidt
, “
Mass flow and tangential momentum accommodation in silicon micromachined channels
,”
J. Fluid Mech.
437
,
29
(
2001
).
24.
C.
Aubert
and
S.
Colin
, “
High-order boundary conditions for gaseous flows in rectangular microducts
,”
Microscale Thermophys. Eng.
5
,
41
(
2001
).
25.
J.
Maurer
,
P.
Tabeling
,
P.
Joseph
, and
H.
Willaime
, “
Second-order slip laws in microchannels for helium and nitrogen
,”
Phys. Fluids
15
,
2613
(
2003
).
26.
M.
Knudsen
, “
Die Gesetze der molecular Stromung und dieinneren Reibungstromung der Gase durch Rohren
,”
Ann. Phys.
28
,
75
(
1909
).
27.
C.
Cercignani
and
A.
Daneri
, “
Flow of a rarefied gas between two parallel plates
,”
J. Appl. Phys.
34
,
3509
(
1963
).
28.
A.
Beskok
and
G. E.
Karniadakis
, “
A model for flows in channels and ducts at micro and nano scales
,”
Microscale Thermophys. Eng.
3
,
43
(
1999
).
29.
R. G.
Deissler
, “
An analysis of second-order slip flow and temperature-jump boundary conditions for rarefied gases
,”
Int. J. Heat Mass Transfer
7
,
681
(
1964
).
30.
A.
Sreekanth
, “
Slip flow through long circular tubes
,” in
Proceedings of the Sixth International Symposium on Rarefied Gas Dynamics
, edited by
L.
Trilling
and
H. Y.
Wachman
(
Academic
,
New York
,
1969
), Vol.
1
, pp.
667
680
.
31.
Y.
Sone
, “
Asymptotic theory of flow of rarefied gas over a smooth boundary I
,” in
Proceedings of the Sixth International Symposium on Rarefied Gas Dynamics
(
Academic
,
New York
,
1969
), Vol.
1
, pp.
243
253
.
32.
N. G.
Hadjiconstantinou
, “
Comment on Cercignani’s second order slip coefficient
,”
Phys. Fluids
15
,
2352
(
2003
).
33.
T.
Ohwada
,
Y.
Sone
, and
K.
Aoki
, “
Numerical analysis of the shear and thermal creep flows of a rarefied gas over a plane wall on the basis of the linearized Boltzmann equation for hard-sphere molecules
,”
Phys. Fluids A
1
,
1588
(
1989
);
Y.
Sone
,
T.
Ohwada
, and
K.
Aoki
, “
Temperature jump and Knudsen layer in a rarefied gas over a plane wall: Numerical analysis of the linearized Boltzmann equation for hard-sphere molecules
,”
Phys. Fluids A
1
,
363
(
1989
).
34.
N. G.
Hadjiconstantinou
, “
Validation of a second-order slip model for dilute gas flows
,”
Microscale Thermophys. Eng.
9
,
137
(
2005
).
35.
N. G.
Hadjiconstantinou
, “
Oscillatory shear-driven gas flows in the transition and free-molecular-flow regimes
,”
Phys. Fluids
17
,
100611
(
2005
).
36.
N. G.
Hadjiconstantinou
and
H. A.
Al-Mohssen
, “
A linearized kinetic formulation including a second-order slip model for an impulsive start problem at arbitrary Knudsen numbers
,”
J. Fluid Mech.
533
,
47
(
2005
).
37.
K. S.
Breuer
, “
Lubrication in MEMS
,” in
Handbook of MEMS
, edited by
M.
Gad-el-Hak
(
CRC
,
Boca Raton, FL
,
2002
).
38.
J. H.
Park
,
P.
Bahukudumbi
, and
A.
Beskok
, “
Rarefaction effects on shear driven oscillatory gas flows: A direct simulation Monte Carlo study in the entire Knudsen regime
,”
Phys. Fluids
16
,
317
(
2004
).
39.
N. G.
Hadjiconstantinou
, “
Sound wave propagation in transition-regime micro- and nanochannels
,”
Phys. Fluids
14
,
802
(
2002
).
40.
N. G.
Hadjiconstantinou
and
O.
Simek
, “
Sound propagation at small scales under continuum and non-continuum transport
,”
J. Fluid Mech.
488
,
399
(
2003
).
41.
I. B.
Crandall
,
Theory of Vibrating Systems and Sound
(
Van Nostrand
,
New York
,
1926
).
42.
G.
Kirchhoff
, “
Ueber den Einflufs der Wärmeleitung in einem Gase auf die Schallbewegung
,”
Ann. Phys. Chem.
134
,
177
(
1868
).
43.
J. W. S.
Rayleigh
,
The Theory of Sound
(
Macmillan
,
New York
,
1896
), Vol.
2
.
44.
B. J.
Hamrock
,
Fundamentals of Fluid Film Lubrication
(
McGraw-Hill
,
New York
,
1994
).
45.
S.
Fukui
and
R.
Kaneko
, “
Analysis of ultra thin gas film lubrication based on linearized Boltzmann equation: First report-derivation of a generalized lubrication equation including thermal creep flow
,”
J. Tribol.
110
,
253
(
1988
).
46.
F. J.
Alexander
,
A. L.
Garcia
, and
B. J.
Alder
, “
Direct simulation Monte Carlo for thin-film bearings
,”
Phys. Fluids
6
,
3854
(
1994
).
47.
L.
Graetz
, “
On the thermal conduction of liquids
,”
Ann. Phys. Chem.
25
,
337
(
1885
).
48.
A. F.
Mills
,
Heat Transfer
(
Irwin
,
Homewood, IL
,
1992
).
49.
E. M.
Sparrow
and
S. H.
Lin
, “
Laminar heat transfer in tubes under slip flow conditions
,”
J. Heat Transfer
84
,
363
(
1962
).
50.
N. G.
Hadjiconstantinou
and
O.
Simek
, “
Constant-wall-temperature Nusselt number in micro and nano channels
,”
J. Heat Transfer
124
,
356
(
2002
).
51.
N. G.
Hadjiconstantinou
, “
Dissipation in small scale gaseous flows
,”
J. Heat Transfer
125
,
944
(
2003
).
52.
M. A.
Gallis
,
D. J.
Rader
, and
J. R.
Torczynski
, “
Calculations of the near-wall thermophoretic force in rarefied gas flow
,”
Phys. Fluids
14
,
4290
(
2002
).
53.
J.
Tyndall
, “
On dust and disease
,”
Proc. R. Inst. G. B.
6
,
1
(
1870
).
54.
M. A.
Gallis
,
J. R.
Torczynski
, and
D. J.
Rader
, “
An approach for simulating the transport of spherical particles in a rarefied gas flow via the direct simulation Monte Carlo
,”
Phys. Fluids
13
,
3482
(
2001
).
55.
H. S.
Wijesinghe
and
N. G.
Hadjiconstantinou
, “
A discussion of hybrid atomistic-continuum methods for multiscale hydrodynamics
,”
Int. J. Multiscale Comp. Eng.
2
,
189
(
2004
).
56.
N. G.
Hadjiconstantinou
, “
Discussion of recent developments in hybrid atomistic-continuum methods for multiscale hydrodynamics
,”
Bull. Pol. Acad. Sci.: Tech. Sci.
53
,
335
(
2005
).
57.
W.
Wagner
, “
A convergence proof for Bird’s direct simulation Monte Carlo method for the Boltzmann equation
,”
J. Stat. Phys.
66
,
1011
(
1992
).
58.
F. J.
Alexander
,
A. L.
Garcia
, and
B. J.
Alder
, “
A consistent Boltzmann algorithm
,”
Phys. Rev. Lett.
74
,
5212
(
1995
).
59.
F. J.
Alexander
,
A. L.
Garcia
, and
B. J.
Alder
, “
Cell size dependence of transport coefficients in stochastic particle algorithms
,”
Phys. Fluids
10
,
1540
(
1998
);
F. J.
Alexander
,
A. L.
Garcia
, and
B. J.
Alder
,
erratum
,
Phys. Fluids
12
,
731
(
2000
).
60.
N. G.
Hadjiconstantinou
, “
Analysis of discretization in the direct simulation Monte Carlo
,”
Phys. Fluids
12
,
2634
(
2000
).
61.
D. J.
Rader
,
M. A.
Gallis
,
J. R.
Torczynski
, and
W.
Wagner
, “
DSMC convergence behavior of the hard-sphere-gas thermal conductivity for Fourier heat flow
,”
Phys. Fluids
18
,
077102
(
2006
).
62.
A. L.
Garcia
and
W.
Wagner
, “
Time step truncation error in direct simulation Monte Carlo
,”
Phys. Fluids
12
,
2621
(
2000
).
63.
N. G.
Hadjiconstantinou
,
A. L.
Garcia
,
M. Z.
Bazant
, and
G.
He
, “
Statistical error in particle simulations of hydrodynamic phenomena
,”
J. Comput. Phys.
187
,
274
(
2003
).
64.
L. L.
Baker
and
N. G.
Hadjiconstantinou
, “
Variance reduction for Monte Carlo solutions of the Boltzmann equation
,”
Phys. Fluids
17
,
051703
(
2005
).
65.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes in C
(
Cambridge University Press
,
New York
,
1994
).
66.
L. L.
Baker
and
N. G.
Hadjiconstantinou
, “
Variance reduction in particle methods for solving the Boltzmann equation
,” in
Proceedings of the Fourth International Conference on Nanochannels, Microchannels and Minichannels
, Limerick, Ireland, 2006 (
ASME
,
New York
,
2006
), paper ICNMM2006–96089.
67.
R. G.
Lord
, “
Some further extensions of the Cercignani-Lampis gas-surface interaction model
,”
Phys. Fluids
7
,
1159
(
1995
).
68.
F.
Sharipov
, “
Application of the Cercignani-Lampis scattering kernel to calculations of rarefied gas flows. I. Plane flow between two parallel plates
,”
Eur. J. Mech. B/Fluids
21
,
113
(
2002
).
You do not currently have access to this content.