The hydrodynamic stability of the flow in a solid rocket motor is revisited using a general linear stability approach. A harmonic perturbation is introduced into the linearized Navier-Stokes equations leading to an eigenvalue problem posed as a system of partial differential equations with respect to the spatial coordinates. The system is discretized by a spectral collocation method applied to each spatial coordinate and the eigenvalues are determined using Arnoldi’s procedure. A special emphasis is placed on the boundary conditions. The main result is the discrete nature of the eigenvalue set. According to the present theory and the obtained results, only some discrete frequencies may exist in the motor (as eigenmodes). These frequencies only depend on the Reynolds number based on the injection velocity and the radius of the pipe flow. They are compared to measurements that have been performed at ONERA in one case with a cold-gas setup and in another case with a reduced scale live motor. Due to the agreement obtained with both experiments, the biglobal stability approach seems to offer new insight into the unresolved thrust oscillations problem.

1.
G. A.
Flandro
and
J.
Majdalani
, “
Aeroacoustic instability in rockets
,”
AIAA J.
41
,
485
(
2003
).
2.
J.
Majdalani
and
G. A.
Flandro
, “
The oscillatory pipe flow with arbitrary wall injection
,”
Proc. R. Soc. London, Ser. A
458
,
1621
(
2002
).
3.
J.
Majdalani
,
G. A.
Flandro
and
S. R.
Fishbach
, “
Some rotational corrections to the acoustic energy equation in injection-driven enclosures
,”
Phys. Fluids
17
,
074102
(
2005
).
4.
F.
Vuillot
, “
Vortex shedding phenomena in solid propellant motors
,”
J. Propul. Power
11
,
626
(
1995
).
5.
M.
Prévost
,
J.
Vetel
,
F.
Plourde
,
S.
Doan-Kim Son
, and
M.
Augelli
, “
Influence of inhibitor shape in small scale motors and cold-gas set-up
,” 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Huntsville, USA July 20–23,
2003
, AIAA 2003–4673.
6.
N.
Lupoglazoff
and
F.
Vuillot
, “
Parietal vortex shedding as a cause of instability for long solid propellant motors. Numerical simulations and comparisons with firing tests
,”
34th Aerospace Sciences Meeting and Exhibit
, Reno, AIAA 96-0761 (
1996
).
7.
V. N.
Varapaev
and
V. I.
Yagodkin
, “
Flow stability in a channel with porous wall
,”
Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza
4
,
91
(
1969
).
8.
J.
Griffond
and
G.
Casalis
, “
On the dependence on the formulation of some nonparallel stability approaches applied to the Taylor flow
,”
Phys. Fluids
12
,
466
(
2000
).
9.
G.
Casalis
,
G.
Avalon
, and
J. Ph.
Pineau
, “
Atial instability of planar channel flow with fluid injection through porous walls
,”
Phys. Fluids
10
,
2558
(
1998
).
10.
J.
Griffond
,
G.
Casalis
, and
J. Ph.
Pineau
, “
Spatial instability of flow in a semiinfinite cylinder with fluid injection through its porous walls
,”
Eur. J. Mech. B/Fluids
19
,
69
(
2000
).
11.
R. S.
Brown
,
R.
Dunlap
,
S. W.
Young
, and
R. C.
Waugh
, “
Vortex shedding as a source of acoustic energy in segmented solid rockets
,”
J. Spacecr. Rockets
18
,
312
(
1981
).
12.
T.
Tatsumi
and
T.
Yoshimura
, “
Stability of the laminar flow in a rectangular duct
,”
J. Fluid Mech.
212
,
437
(
1990
).
13.
V.
Theofilis
, “
Linear instability analysis in two spatial dimensions
,”
Fourth ECCOMAS Computational Fluid Dynamics Conference
, ECCOMAS98, Athens (
1998
).
14.
V.
Theofilis
,
P. W.
Duck
, and
J.
Owen
, “
Viscous linear stability analysis of rectangular duct and cavity flows
,”
J. Fluid Mech.
505
,
249
(
2004
).
15.
J. Ch.
Robinet
and
P.
de la Motte
, “
Global instabilities in separated boundary layers
,”
Third International Symposium on Turbulence and Shear Flow Phenomenon (TSFP-3)
, Sendai, Japan (
2003
).
16.
R. S.
Lin
and
M.
Malik
, “
On the stability of attachment-line boundary layers. Part 1. The incompressible swept Hiemenz flow
,”
J. Fluid Mech.
311
,
239
(
1996
).
17.
V.
Theofilis
,
S.
Hein
and
U.
Dallmann
, “
On the origins of unsteadiness and three-dimensionality in a laminar separation bubble
,”
Philos. Trans. R. Soc. London
358
,
3229
(
2000
).
18.
V.
Theofilis
,
A.
Fedorov
,
D.
Obrist
, and
U. Ch.
Dallmann
, ”
The extended Görtler-Hämmerlin model for linear instability of three-dimensional incompressible swept attachment-line boundary layer flow
,”
J. Fluid Mech.
487
,
271
(
2003
).
19.
C.
Robitaillié-Montané
,
Th.
Féraille
, and
G.
Casalis
, “
Linear stability of the incompressible swept Hiemnez flow : A 2D model
,” in
21st International Congress of Theoretical and Applied Mechanics
, Warsaw (
2003
).
20.
A.
Berman
, “
Laminar flow in channels with porous walls
,”
J. Appl. Phys.
24
,
1232
(
1953
).
21.
P.
Huerre
and
M.
Rossi
,
Hydrodynamic Instabilities in Open Flows
(
Cambridge University Press
, Cambridge,
1998
).
22.
M. B.
Zaturska
,
P. G.
Drazin
, and
W. H.H.
Banks
, “
On the flow of a viscous fluid driven along a channel by suction at porous walls
,” in
Fluid Dynamics Research 4
(
North-Holland
, Amsterdam,
1988
), pp.
151
178
.
23.
S.
Ferro
and
G.
Gnavi
, “
Spatial instability of similarity solutions for viscous flows in channels with porous walls
,”
Phys. Fluids
12
,
797
(
2000
).
24.
G.
Casalis
and
F.
Vuillot
, “
Motor flow instabilities—Part 2 : Intrinsic linear stability of the flow induced by wall injection
,” RTO-AVT VKI Special Course on Internal Aerodynamics in Solid Rocket Propulsion (
2002
).
25.
R.
Dunlap
,
A. M.
Blackner
,
R. C.
Waugh
,
R. S.
Brown
, and
P. G.
Willoughby
, “
Internal flow field studies in a simulated cylindrical port rocket chamber
,”
J. Propul. Power
6
,
690
(
1990
).
26.
J.
Barron
,
W.
Van Moorhem
, and
J.
Majdalani
, “
A novel investigation of the oscillatory field over a transpiring surface
,”
J. Sound Vib.
235
,
281
(
2000
).
27.
G.
Avalon
and
D.
Lambert
, Campagne d’essais VALDO, période 2000/2001, ONERA, Etablissement de Palaiseau RT 2/05424 DEFA (
2001
).
28.
J. C.
Godon
and
M.
Prévost
, “
Restitutions et analyses des instabilités des essais no 10 à 15 du montage LP9—démonstrateur de VSP
, ONERA, Etablissement du Fauga-Mauzac RT 2/08692 DEFA/DMAE, CNES-RT-NT-1331-0402-ONERA-01 (
2004
).
29.
V.
Yang
, “
Overview of motor internal flow dynamics
,” RTO-AVT VKI Special Course on Internal Aerodynamics in Solid Rocket Propulsion (
2002
).
30.
W. W.
Chu
,
V.
Yang
, and
J.
Majdalani
, “
Premixed flame response to acoustic waves in a porous-walled chamber with surface mass injection
,”
Combust. Flame
133
,
359
(
2003
).
31.
A. B.
Vyas
,
J.
Majdalani
, and
V.
Yang
, “
Estimation of the laminar premixed flame temperature and velocity in injection-driven combustion chambers
,”
Combust. Flame
133
,
371
(
2003
).
32.
J.
Griffond
and
G.
Casalis
, “
Linear stability of injection induced flow: Effect of weak unsteadiness
,”
International Conference on Stability and Turbulence
, Novosibirsk (
1999
).
33.
C.
Canuto
,
M. Y.
Hussaini
,
A.
Quarteroni
, and
T. A.
Zan
,
Spectral Methods in Fluid Dynamics
(
Springer
, New York,
1987
).
34.
W. S.
Edwards
,
L. S.
Tuckerman
,
R. A.
Friesner
, and
D. C.
Sorensen
, “
Krylov methods for the incompressible Navier-Stokes equations
,”
J. Comput. Phys.
110
,
82
(
1994
).
35.
V.
Theofilis
, “
Advances in global linear instability analysis of nonparallel and three-dimensional flows
,”
Prog. Aerosp. Sci.
39
,
249
(
2003
).
36.
B.
Ugurtas
, “
Etude numérique et expérimentale des instabilités hydrodynamiques et du couplage aéro-acoustique dans unécoulement de Taylor
,” Ph.D. thesis
Université Paris VI
(
2000
).
37.
J-Cl.
Godon
, “
Code PERSE: Une approche unidimensionnelle dans la modélisation du fonctionnement stationnaire d’un propulseurà propergol solide
,” 3ème colloque R&D “Ecoulements internes en propulsion solide,” Poitiers (
1998
).
You do not currently have access to this content.