Numerical simulations are used to examine the effect of an electrostatic field on an emulsion of drops in a channel. The leaky-dielectric theory of Taylor is used to find the electric field, the charge distribution on the drop surface, and the resulting forces. The Navier-Stokes equations are solved using a front-tracking/finite-volume technique. Depending on the ratios of conductivity and permittivity of the drop fluid and the suspending fluid the drops can become oblate or prolate. In addition to normal forces that deform the drops, tangential forces can induce a fluid motion either from the poles of the drops to their equator or from the equator to the poles. In this paper we focus on oblate drops, where both the dielectrophoretic and the electrohydrodynamic interactions of the drops work together to “fibrate” the emulsion by lining the drops up into columns parallel to the electric field. When the flow through the channel is slow, the fibers can extend from one wall to the other. As the flow rate is increased the fibers are broken up and drops accumulate at the channel walls. For high enough flow rate, when the drop interactions are dominated by the fluid shear, the drops remain in suspension. Only two-dimensional systems are examined here, but the method can be used for fully three-dimensional systems as well.

1.
C. T.
O’Konski
and
H. C.
Thacher
, Jr.
, “
The distortion of aerosol droplets by an electric field
,”
J. Phys. Chem.
57
,
955
(
1953
).
2.
G. I.
Taylor
, “
Disintegration of water drops in an electric field
,”
Proc. R. Soc. London, Ser. A
280
,
383
(
1964
).
3.
O. A.
Basaran
and
L. E.
Scriven
, “
Axisymmetric shapes and stability of isolated charged drops in an external electric field
,”
Phys. Fluids A
1
,
799
(
1989
).
4.
R. S.
Allan
and
S. G.
Mason
, “
Particle behaviour in shear and electric fields I. Deformation and burst of fluid drops
,”
Proc. R. Soc. London, Ser. A
267
,
45
(
1962
).
5.
G. I.
Taylor
, “
Studies in electrohydrodynamics: I. The circulation produced in a drop by an electric field
,”
Proc. R. Soc. London, Ser. A
291
,
159
(
1966
).
6.
S.
Torza
,
R. G.
Cox
, and
S. G.
Mason
, “
Electrohydrodynamic deformation and burst of liquid drops
,”
Philos. Trans. R. Soc. London, Ser. A
269
,
295
(
1971
).
7.
O. O.
Ajayi
, “
A note on Taylor’s electrohydrodynamic theory
,”
Proc. R. Soc. London, Ser. A
364
,
499
(
1978
).
8.
O.
Vizika
and
D. A.
Saville
, “
The electrohydrodynamic deformation of drops suspended in liquids in steady and oscillatory electric fields
,”
J. Fluid Mech.
239
,
1
(
1992
).
9.
F.
Feuillebois
, in
Multiphase Science and Technology
, edited by
G. F.
Hewitt
,
J. M.
Delhaye
, and
N.
Zuber
(Hemisphere, New York,
1989
), Vol.
4
, p.
583
.
10.
J.
Feng
,
H. H.
Hu
, and
D. D.
Joseph
, “
Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. II. Couette and Poiseuille flows
,”
J. Fluid Mech.
277
,
271
(
1995
).
11.
S.
Mortazavi
and
G.
Tryggvason
, “
A numerical study of the motion of drops in Poiseuille flow. Part 1. Lateral migration of one drop
,”
J. Fluid Mech.
400
,
1
(
2000
).
12.
B. P.
Ho
and
L. G.
Leal
, “
Inertial migration of rigid spheres in two-dimensional unidirectional flows
,”
J. Fluid Mech.
65
,
365
(
1976
).
13.
P.
Vasseur
and
R. G.
Cox
, “
The lateral migration of a spherical particle in two-dimensional shear flows
,”
J. Fluid Mech.
78
,
385
(
1976
).
14.
R. G.
Cox
and
S. K.
Hsu
, “
The lateral migration of a solid particles in a laminar flow near a plane
,”
Int. J. Multiphase Flow
3
,
201
(
1977
).
15.
J. F.
Brady
and
G.
Bossis
, “
Stokesian dynamics
,”
Annu. Rev. Fluid Mech.
20
,
111
(
1988
).
16.
R.
Nott
and
J. F.
Brady
, “
Pressure-driven flow of suspensions: Simulation and theory
,”
J. Fluid Mech.
275
,
157
(
1994
).
17.
H.
Zhou
and
C.
Pozrikidis
, “
The flow of ordered and random suspensions of two-dimensional drops in a channel
,”
J. Fluid Mech.
255
,
103
(
1993
).
18.
M.
Loewenberg
and
E. J.
Hinch
, “
Numerical simulation of a concentrated emulsion in shear flow
,”
J. Fluid Mech.
321
,
395
(
1996
).
19.
X.
Li
and
C.
Pozrikidis
, “
Wall-bounded shear flow and channel flow of suspensions of liquid drops
,”
Int. J. Multiphase Flow
26
,
1247
(
2000
).
20.
D. L.
Koch
and
R. J.
Hill
, “
Inertial effects in suspension and porous media flows
,”
Annu. Rev. Fluid Mech.
33
,
619
(
2001
).
21.
W. M.
Winslow
, “
Induced fibrillation of suspensions
,”
J. Appl. Phys.
20
,
1137
(
1949
).
22.
H.
Block
and
J. P.
Kelly
, “
Electro-rheology
,”
J. Phys. D
21
,
1661
(
1988
).
23.
T. C.
Halsey
,
J. E.
Martin
, and
D.
Adolf
, “
Rheology of electrorheological fluids
,”
Phys. Rev. Lett.
68
,
1519
(
1992
)
24.
T. C.
Halsey
, “
Electrorheological fluids
,”
Science
258
,
761
(
1992
).
25.
D. J.
Klingerberg
,
F.
van Swoi
, and
C. F.
Zukoski
, “
Dynamic simulation of electrorheological suspensions
,”
J. Chem. Phys.
91
,
7888
(
1989
).
26.
D. J.
Klingerberg
,
F.
van Swoi
, and
C. F.
Zukoski
, “
The small shear rate response of electrorheological suspension, I. Simulation if the point-dipole limit
,”
J. Chem. Phys.
94
,
6160
(
1991
).
27.
R. T.
Bonnecaze
and
J. F.
Brady
, “
Dynamic simulation of an electrorheological fluid
,”
J. Chem. Phys.
96
,
2183
(
1992
).
28.
P. A.
Arp
,
R. T.
Foister
, and
S. G.
Mason
, “
Some electrohydrodynamic effects in fluid dispersions
,”
Adv. Colloid Interface Sci.
12
,
295
(
1980
).
29.
X. D.
Pan
and
G. H.
McKinley
, “
Characteristics of electrorheological responses in an emulsion system
,”
J. Colloid Interface Sci.
195
,
101
(
1997
).
30.
H.
Kimura
,
K.
Aikawa
,
Y.
Masabuchi
,
J.
Takimoto
,
K.
Koyama
, and
T.
Uemura
, “‘
Positive’ and ‘negative’ electro-rheological effect of liquid blends
,”
J. Non-Newtonian Fluid Mech.
76
,
199
(
1998
).
31.
J. W.
Ha
and
S. M.
Yang
, “
Rheological responses of oil-in-oil emulsions in an electric field
,”
J. Rheol.
44
,
235
(
2000
).
32.
K.
Tajiri
,
K.
Ohta
,
T.
Nagaya
,
H.
Orihara
, and
A.
Inoue
, “
Electrorheological effect in immiscible polymer blends
,”
J. Rheol.
41
,
331
, (
1997
).
33.
K.
Tajiri
,
H.
Orihara
,
Y.
Ishibashi
,
M.
Doi
, and
A.
Inoue
, “
Transient response of electrorheological effect to a step field in an immiscible polymer blend: First mode in type I blend
,”
J. Rheol.
42
,
335
(
1998
).
34.
K.
Tajiri
,
H.
Orihara
,
Y.
Ishibashi
,
M.
Doi
, and
A.
Inoue
, “
Transient response of electrorheological effect to a step field in an immiscible polymer blend: First mode in type I blend
,”
J. Rheol.
42
,
335
(
1998
).
35.
H.
Orihara
,
Y.
Hosoi
,
K.
Tajiri
,
Y.
Ishibashi
,
M.
Doi
, and
A.
Inoue
, “
Electrorheological properties of a type-I immiscible polymer blend: Scaling and structural changes
,”
J. Rheol.
43
,
125
(
1999
).
36.
J. D.
Sherwood
, “
Breakup of fluid droplets in electric and magnetic fields
,”
J. Fluid Mech.
188
,
133
(
1988
).
37.
T.
Tsukada
,
T.
Katayama
,
Y.
Ito
, and
M.
Hozawa
, “
Theoretical and experimental studies of circulation’s inside and outside a deformed drop under a uniform electric field
,”
J. Chem. Eng. Jpn.
26
,
698
(
1993
).
38.
T.
Tsukada
,
Y.
Yamamoto
,
T.
Katayama
, and
M.
Hozawa
, “
Effect of an electric field on the behavior of a drop moving in a quiescent liquid
,”
J. Chem. Eng. Jpn.
27
,
662
(
1994
).
39.
J. Q.
Feng
and
T. C.
Scott
, “
A computational analysis of electrohydrodynamics of a leaky dielectric drop in an electric field
,”
J. Fluid Mech.
311
,
289
(
1996
).
40.
C.
Sozou
, “
Electrohydrodynamics of a pair of liquid drops
,”
J. Fluid Mech.
67
,
339
(
1975
).
41.
J. C.
Baygents
,
N. J.
Rivette
, and
H. A.
Stone
, “
Electrohydrodynamic deformation and interaction of drop pairs
,”
J. Fluid Mech.
368
,
359
(
1998
).
42.
J. R.
Melcher
and
G. I.
Taylor
, “
Electrohydrodynamics: A review of the role of interfacial shear stresses
,”
Annu. Rev. Fluid Mech.
1
,
111
(
1969
).
43.
D. A.
Saville
, “
Electrohydrodynamics: The Taylor-Melcher leaky dielectric model
,”
Annu. Rev. Fluid Mech.
29
,
27
(
1997
).
44.
S. O.
Unverdi
and
G.
Tryggvason
, “
A Front tracking method for viscous incompressible flows
.”
J. Comput. Phys.
100
,
25
(
1992
).
45.
G.
Tryggvason
,
B.
Bunner
,
A.
Esmaeeli
,
D.
Juric
,
N.
Al-Rawahi
,
W.
Tauber
,
J.
Han
,
S.
Nas
, and
Y.-J.
Jan
, “
A front tracking method for the computations of multiphase flow
,”
J. Comput. Phys.
169
,
708
(
2001
).
46.
C. S.
Peskin
, “
Numerical analysis of blood flow in the heart
,”
J. Comput. Phys.
25
,
220
(
1977
).
47.
S.
Krause
and
P.
Chandratreya
, “
Electrorotation of deformable fluid droplets
,”
J. Colloid Interface Sci.
206
,
10
(
1998
).
48.
P. H.
Rhodes
,
R. S.
Snyder
, and
G. O.
Roberts
, “
Electrohydrodynamic distortion of sample streams in continuous flow electrophoresis
,”
J. Colloid Interface Sci.
129
,
78
(
1989
).
49.
J.
Che
, Ph.D. dissertation,
The University of Michigan
(
1999
).
You do not currently have access to this content.