A model of turbulent cylindrical particle suspensions is proposed to predict the orientation distribution of particles. The fluctuating equation for the orientation distribution function (ODF) of cylindrical particles is theoretically solved using the method of characteristics. The orientation-correlated terms in the mean equation for the ODF due to the random motion of cylindrical particles are related to the correlations of the mean ODF and the fluid velocity gradient. Thus, the evolution of the mean ODF is described by a modified convection-dispersion equation. The model and modified equation are used to calculate the ODF in a pipe flow numerically. The results compare qualitatively with the experimental data and show that the turbulent dispersion makes cylindrical particles have a broad orientation distribution, while the velocity gradient plays an opposite role. The increase of the particle aspect ratio leads to a less aligned distribution in the vicinity of the axis and a narrower orientation distribution at positions far from the axis.

1.
E. S.G.
Shaqfeh
and
G. H.
Fredrickson
, “
The hydrodynamic stress in a suspension of rods
,”
Phys. Fluids A
2
,
7
(
1990
).
2.
M. D.
Rahnama
,
L.
Koch
, and
E. S.G.
Shaqfeh
, “
The effect of hydrodynamic interactions on the orientation distribution in a fiber suspension subject to simple shear flow
,”
Phys. Fluids
7
,
487
(
1995
).
3.
L. G.
Leal
and
E. J.
Hinch
, “
The effect of weak Brownian rotation on particles in shear flow
,”
J. Fluid Mech.
46
,
685
(
1972
).
4.
E. J.
Hinch
and
L. G.
Leal
, “
Time-dependent shear flows of a suspension of particles with weak Brownian rotations
,”
J. Fluid Mech.
57
,
753
(
1973
).
5.
G. B.
Jeffery
, “
The motion of ellipsoidal particles immersed in a viscous fluid
,”
Proc. R. Soc. London, Ser. A
102
,
161
(
1922
).
6.
E.
Anczurowski
and
S. G.
Mason
, “
The kinetics of flowing dispersions: III Equilibrium orientations of rods and discs (experimental)
,”
J. Colloid Interface Sci.
23
,
533
(
1967
).
7.
E. M.
Krushkal
and
I.
Gallily
, “
On the orientation distribution function of non-spherical aerosol particles in a general shear flow-I. the laminar case
,”
J. Colloid Interface Sci.
99
,
141
(
1984
).
8.
J. A.
Olson
, “
The motion of fibres in turbulent flow, stochastic simulation of isotropic homogeneous turbulence
,”
Int. J. Multiphase Flow
27
,
2083
(
2001
).
9.
J. A.
Olson
,
I.
Frigaard
,
C.
Chan
, and
J. P.
Hamalainen
, “
Modeling a turbulent fibre suspension flowing in a planar contraction: the one-dimensional headbox
,”
Int. J. Multiphase Flow
30
,
51
(
2004
).
10.
J. Z.
Lin
,
W. F.
Zhang
, and
Z. S.
Yu
, “
Numerical research on the orientation distribution of fibers immersed in laminar and turbulent pipe flows
,”
J. Aerosol Sci.
35
,
63
(
2004
).
11.
E. M.
Krushkal
and
I.
Gallily
, “
On the orientation distribution function of non-spherical aerosol particles in a general shear flow-II. The turbulent case
,”
J. Aerosol Sci.
19
,
197
(
1988
).
12.
J. A.
Olson
and
R. J.
Kerekes
, “
The motion of fibres in turbulent flow
,”
J. Fluid Mech.
377
,
47
(
1988
).
13.
J.
Feng
and
L. G.
Leal
, “
Pressure-driven channel flows of a model liquid-crystalline polymer
,”
Phys. Fluids
11
,
2821
(
2000
).
14.
M. K.
Lyon
,
D. W.
Mead
,
R. E.
Elliott
, and
L. G.
Leal
, “
Structure formation in moderately concentrated viscoelastic suspensions in simple shear flow
,”
J. Rheol.
45
,
881
(
2001
).
15.
G.
Sgalari
,
L. G.
Leal
, and
E.
Meiburg
Texture evolution of sheared liquid crystalline polymers: Numerical predictions of roll-cells instability, director turbulence, and striped texture with a molecular model
,”
J. Rheol.
47
,
1417
(
2003
).
16.
O.
Bernstein
and
M.
Shapiro
, “
Direct determination of the orientation distribution function of cylindrical particles immersed in laminar and turbulent shear flows
,”
J. Aerosol Sci.
25
,
113
(
1994
).
17.
G. K.
Batchelor
, “
The stress system in a suspension of force-free particles
,”
J. Fluid Mech.
41
,
545
(
1970
).
18.
S. M.
Dinh
and
R. C.
Armstrong
, “
A rheological equation of state for semiconcentrated fiber suspensions
,”
J. Rheol.
28
,
207
(
1984
).
19.
S. G.
Advani
and
C. L
Tucker
, “
The use of tensors to describe and predict fiber orientation in short fiber composites
,”
J. Rheol.
31
,
751
(
1987
).
20.
J. C.H.
Fung
,
J. C.R.
Hunt
,
N. A.
Malik
, and
R. J.
Perkins
, “
Kinematic simulation of homogeneous turbulence by unsteady random Fourier modes
,”
J. Fluid Mech.
236
,
281
(
1992
).
21.
L. P.
Wang
and
D. E.
Stock
, “
Numerical simulation of heavy particle dispersion-scale ratio and flow decay considerations
,”
ASME J. Fluids Eng.
116
,
154
(
1994
).
You do not currently have access to this content.