The evolution of a viscous vortex ring from thin to thick-cored form is considered using an improved asymptotic solution, which is obtained after impressing a spatially uniform drift on the first-order solution of the Navier–Stokes equations. The obtained class of rings can be considered as the viscous analog solution to the Norbury vortices and classified in terms of the ratio of their initial outer radius to the core radius. The model agrees with the reported theoretical and experimental results referring to the post-formation and the formation stages. By using the matching procedure suggested earlier and the obtained properties of the viscous vortex ring, it is found that when the length-to-diameter aspect ratio LD reaches the limiting value 4.0 (“formation number”), the appropriate values of the normalized energy and circulation become around 0.3 and 2.0, respectively. An approach that enables to predict the “formation number” is proposed.

1.
M.
Gharib
,
E.
Rambod
, and
K.
Shariff
, “
A universal time scale for vortex ring formation
,”
J. Fluid Mech.
360
,
121
(
1998
).
2.
K.
Mohseni
and
M.
Gharib
, “
A model for universal time scale of vortex ring formation
,”
Phys. Fluids
10
,
2436
(
1998
).
3.
P. E.
Linden
and
J. S.
Turner
, “
The formation of ‘optimal’ vortex rings, and the efficiency of propulsion devices
,”
J. Fluid Mech.
427
,
61
(
2001
).
4.
J.
Norbury
, “
A family of steady vortex rings
,”
J. Fluid Mech.
57
,
417
(
1973
).
5.
K.
Shariff
and
A.
Leonard
, “
Vortex rings
,”
Annu. Rev. Fluid Mech.
24
,
235
(
1992
).
6.
T.
Lim
and
T.
Nickels
, “
Vortex rings
,” in
Fluid Vortices
, edited by
S. I.
Green
(
Kluwer
, Dordrecht,
1995
).
7.
P. G.
Saffman
, “
The velocity of viscous vortex rings
,”
Stud. Appl. Math.
49
,
371
(
1970
).
8.
P. G.
Saffman
,
Vortex Dynamics
(
Cambridge University Press
, Cambridge,
1992
).
9.
O. M.
Phillips
, “
The final period of decay of non-homogeneous turbulence
,”
Proc. Cambridge Philos. Soc.
52
, Pt. 1,
135
(
1956
).
10.
H.
Helmholtz
, “
On integrals of the hydrodynamical equations which express vortex motion
,” translated by P. G. Tait with a letter by Lord Kelvin (W. Thompson),
London, Edinburgh Dublin Philos. Mag. J. Sci.
33
,
485
(
1867
) (from German).
11.
H.
Lamb
,
Hydrodynamics
, 6th ed. (
Dover
, New York,
1932
), Secs. 150 and 152.
12.
T.
Kambe
and
Y.
Oshima
, “
Generation and decay of viscous vortex rings
,”
J. Phys. Soc. Jpn.
38
,
271
(
1975
).
13.
N.
Rott
and
B.
Cantwell
, “
Vortex drift. I: Dynamic interpretation
,”
Phys. Fluids A
5
,
1443
(
1993
).
14.
N.
Rott
and
B.
Cantwell
, “
Vortex drift. II: The flow potential surrounding a drifting vortical region
,”
Phys. Fluids A
5
,
1451
(
1993
).
15.
A.
Kaltaev
,
Investigation of Dynamic Characteristics of Motion of A Vortex Ring of Viscous Fluid In Continuum Dynamics
(
Kazah State University
, Alma-Ata,
1982
), p.
63
(in Russian).
16.
A.
Berezovski
and
F.
Kaplanski
, “
Vorticity distributions for thick and thin vortex pairs and rings
,”
Arch. Mech.
47
,
1015
(
1995
).
17.
F.
Kaplanski
and
Ü.
Rudi
, “
Dynamics of a viscous vortex ring
,”
Int. J. Fluid Mech. Res.
26
,
618
(
1999
).
18.
A. P.
Prudnikov
,
Yu. A.
Brychkov
, and
O. I.
Marichev
,
Integrals and Series
(
Nauka
, Moscow,
1983
) (in Russian).
19.
B. J.
Cantwell
, “
Transition in the axisymmetric jet
,”
J. Fluid Mech.
104
,
369
(
1981
).
20.
B. J.
Cantwell
, “
Organized motion in turbulent flow
,”
Annu. Rev. Fluid Mech.
13
,
457
(
1981
)
21.
A.
Weigand
and
M.
Gharib
, “
On the evolution of laminar vortex rings
,”
Exp. Fluids
22
,
447
(
1997
).
22.
S.
Stanaway
,
B. J.
Cantwell
, and
P. R.
Spalart
, “
Navier–Stokes simulations of axisymmetric vortex rings
,” AIAA Pap. 88-0318 (
1988
).
23.
R.
Verzicco
and
P.
Orlandi
, “
Mixedness in the formation of a vortex ring
,”
Phys. Fluids
7
,
151
(
1995
).
You do not currently have access to this content.