Turbulence developed from Rayleigh-Taylor instability between two compressible miscible fluids in an unbounded domain is addressed in this paper. It is demonstrated that the turbulent Mach number in the turbulent core has an upper bound, independent of the density ratio under a broad range of initial mean configurations. The initial thermodynamic state of the system determines the amount of potential energy per unit mass involved in the turbulent mixing stage, and thus the characteristic level of turbulent fluctuations that is achievable is linked to the characteristic speed of sound such that the turbulent Mach number is limited. For the particular case of an ideal gas, this bound on the turbulent Mach number is found to be between 0.25 and 0.6, depending on the particular initial thermodynamic state. Hence, intrinsic compressibility effects (those owing to large Mach number) are likely to be limited in the turbulent stage of a pure Rayleigh-Taylor problem. This result is confirmed by large-eddy simulations (LES) of systems with density jumps at the interface of 3:1, a density ratio for which there is extensive data available in the literature. The LES predictions of the mixing depth growth and overall mixing agree with results previously obtained in incompressible configurations with a negligibly small Mach number, and the data fully describing the Reynolds stresses and the budget of the (resolved) turbulent kinetic energy equation are provided.

1.
Lord
Rayleigh
, “
Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density
,”
Proc. London Math. Soc.
14
,
170
(
1883
).
2.
G. I.
Taylor
, “
The instability of liquid surfaces when accelerated in in a direction perpendicular to their planes
,”
Proc. R. Soc. London, Ser. A
201
,
192
(
1950
).
3.
R. E.
Duff
,
F. H.
Harlow
, and
C. W.
Hirt
, “
Effects of diffusion on interface instability between gases
,”
Phys. Fluids
5
,
417
(
1962
).
4.
D.
Livescu
, “
Compressibility effects on the Rayleigh-Taylor instability growth between inmiscible fluid
,”
Phys. Fluids
16
,
118
(
2004
).
5.
K. I.
Read
, “
Experimental investigation of turbulent mixing by Rayleigh-Taylor instability
,”
Physica D
12
,
45
(
1984
).
6.
D. L.
Youngs
, “
Numerical simulation of turbulent mixing by Rayleigh-Taylor instability
,”
Physica D
12
,
32
(
1984
).
7.
D. H.
Sharp
, “
An overview of Rayleigh-Taylor instability
,”
Physica D
12
,
3
(
1984
).
8.
D. L.
Youngs
, “
Modelling turbulent mixing by Rayleigh-Taylor instability
,”
Physica D
37
,
270
(
1989
).
9.
Y.
Zhou
, “
A scaling analysis of turbulent flows driven by Rayleigh-Taylor and Richtmyer-Meshkov instabilities
,”
Phys. Fluids
13
,
538
(
2001
).
10.
P. F.
Linden
and
J. M.
Redondo
, “
Molecular mixing in Rayleigh-Taylor instability. Part I: Global mixing
,”
Phys. Fluids A
3
1269
(
1991
).
11.
P.
Ramaprabhu
and
M. J.
Andrews
, “
Experimental investigation of Rayleigh-Taylor mixing at small Atwood numbers
,”
J. Fluid Mech.
502
,
233
(
2004
).
12.
D. L.
Youngs
, “
Three-dimensional numerical simulation of turbulent mixing by Rayleigh-Taylor instability
,”
Phys. Fluids A
3
,
1312
(
1991
).
13.
A. W.
Cook
and
P. E.
Dimotakis
, “
Transition stages of Rayleigh-Taylor instability between miscible fluids
,”
J. Fluid Mech.
443
,
69
(
2001
).
14.
A. W.
Cook
and
Y.
Zhou
, “
Energy transfer in Rayleigh-Taylor instability
,”
Phys. Rev. E
66
,
026312
(
2002
).
15.
A. W.
Cook
,
W.
Cabot
, and
P. L.
Miller
, “
The mixing transition in rayleigh-taylor instability
,”
J. Fluid Mech.
511
,
333
(
2004
).
16.
P. F.
Linden
,
J. M.
Redondo
, and
D. L.
Youngs
, “
Molecular mixing in Rayleigh-Taylor instability
,”
J. Fluid Mech.
265
,
97
(
1994
).
17.
S. B.
Dalziel
,
P. F.
Linden
, and
D. L.
Youngs
, “
Self-similarity and internal structure of turbulence induced by Rayleigh-Taylor instability
,”
J. Fluid Mech.
399
,
1
(
1999
).
18.
C.
Meneveau
and
J.
Katz
, “
Scale-invariance and turbulence models for large-eddy simulations
,”
Annu. Rev. Fluid Mech.
32
,
1
(
2000
).
19.
R. S.
Rogallo
and
P.
Moin
, “
Numerical simulation of turbulent flows
,”
Annu. Rev. Fluid Mech.
16
,
99
(
1984
).
20.
U.
Piomelli
and
J. R.
Chasnov
, in
Large-Eddy Simulations: Theory and Applications, Turbulence and Transition Modelling
, edited by
M.
Hallbäck
,
D. S.
Henningson
,
A. V.
Johansson
and
P. H.
Alfredsson
(
Kluwer
, Dordrecht,
1996
), pp.
269
336
.
21.
M.
Lesieur
and
O.
Métais
, “
New trends if large-eddy simulation of turbulence
,”
Annu. Rev. Fluid Mech.
28
,
45
(
1996
).
22.
G.
Dimonte
,
D. L.
Youngs
,
A.
Dimits
,
S.
Weber
,
M.
Marinak
,
S.
Wunsch
,
C.
Garasi
,
A.
Robinson
,
M. J.
Andrews
,
P.
Ramaprabhu
,
A. C.
Calder
,
B.
Fryxell
,
J.
Biello
,
L.
Dursi
,
P.
MacNeice
,
K.
Olson
,
P.
Ricker
,
R.
Rosner
,
F.
Timmes
,
H.
Tufo
,
Y.
Young
, and
M.
Zingale
, “
A comparative study of the turbulent Rayleigh-Taylor instability using high-resolution three-dimensional numerical simulations: The Alpha-group collaboration
,”
Phys. Fluids
16
,
1668
(
2004
).
23.
P.
Chassaing
,
R. A.
Antonia
,
F.
Anselmet
,
L.
Joly
, and
S.
Sarkar
,
Variable Density Fluid Turbulence
(
Kluwer Academic
, Dordrecht,
2002
).
24.
S.
Sarkar
,
G.
Erlebacher
,
M. Y.
Hussaini
, and
H. O.
Kreiss
, “
The analysis and modeling of dilatational terms in compressible turbulence
,”
J. Fluid Mech.
227
,
473
(
1991
).
25.
S.
Sarkar
, “
The stabilizing effect of compressibility in turbulent shear flow
,”
J. Fluid Mech.
282
,
163
(
1995
).
26.
A. W.
Vreman
,
N. D.
Sandham
, and
K. H.
Luo
, “
Compressible mixing layer growth rate and turbulence characteristics
,”
J. Fluid Mech.
320
,
235
(
1996
).
27.
S.
Sarkar
, “
On density and pressure fluctuations in uniformly sheared compressible flow
,”
Proceedings, IUTAM Symposium on Variable Density Low-Speed Flows, Marseille
, edited by
L.
Fulachier
,
J. L.
Lumley
, and
F.
Anselmet
(Kluwer Academic, Dordrecht,
1996
).
28.
J. B.
Freund
,
S. K.
Lele
, and
P.
Moin
, “
Compressibility effects in a turbulent annular mixing layer. 1. Turbulence and growth rate
,”
J. Fluid Mech.
421
,
229
(
2000
).
29.
C.
Pantano
and
S.
Sarkar
, “
A study of compressibility effects in the high-speed, turbulent shear layer using direct simulation
,”
J. Fluid Mech.
,
451
,
329
(
2002
).
30.
A. E.
Gill
,
Atmosphere-Ocean Dynamics
(
Academic
, New York,
1982
).
31.
J.
Pedloski
,
Geophysical Fluid Dynamics
(
Springer
, Berlin,
1987
).
32.
G. K.
Batchelor
,
An Introduction to Fluid Dynamics
(
Cambridge University Press
, Cambridge,
1967
).
33.
Y.
Chen
,
Y.
Deng
,
J.
Glimm
,
G.
Li
, and
Q.
Zang
, “
A renormalization group scaling analysis for compressible two-phase flow
,”
Phys. Fluids A
5
,
2929
(
1993
).
34.
B.
Vreman
,
B.
Geurts
, and
H.
Kuerten
, “
Subgrid-modelling in LES of compressible flow
,”
Appl. Sci. Res.
54
,
191
(
1995
).
35.
B.
Vreman
,
B.
Geurts
, and
H.
Kuerten
, “
Large-eddy simulation of the turbulent mixing layer
,”
J. Fluid Mech.
339
,
357
(
1997
).
36.
A.
Yoshizawa
, “
Statistical theory for compressible turbulent shear flows, with application to subgrid modeling
,”
Phys. Fluids
29
,
2152
(
1986
).
37.
C. G.
Speziale
,
G.
Erlebacher
,
T. A.
Zang
, and
M. Y.
Hussaini
, “
The subgrid-scale modeling of compressible turbulence
,”
Phys. Fluids
31
,
940
(
1988
).
38.
P.
Moin
,
K.
Squires
,
W.
Cabot
, and
S.
Lee
, “
A dynamic subgrid-scale model for compressible turbulence and scalar transport
,”
Phys. Fluids A
3
,
2746
(
1991
).
39.
G.
Erlebacher
,
M. Y.
Hussaini
,
C. G.
Speziale
, and
T. A.
Zang
, “
Toward the large-eddy simulation of compressible flows
,”
J. Fluid Mech.
238
,
155
(
1992
).
40.
T. A.
Zang
,
R. B.
Dahlburg
, and
J. P.
Dahlburg
, “
Direct and large-eddy simulation of three-dimensional compressible Navier-Stokes turbulence
,”
Phys. Fluids A
4
,
127
(
1992
).
41.
S. K.
Lele
, “
Compact finite difference schemes with spectral-like resolution
,”
J. Comput. Phys.
103
,
16
(
1992
).
42.
F. K.
Chow
and
P.
Moin
, “
A further study of numerical errors in large-eddy simulations
,”
J. Comput. Phys.
18
,
366
(
2003
).
43.
J. H.
Williamson
, “
Low-storage Runge-Kutta schemes
,”
J. Comput. Phys.
35
,
48
(
1980
).
44.
K. W.
Thompson
, “
Time-dependent boundary conditions for hyperbolic systems, II
,”
J. Comput. Phys.
,
89
,
439
(
1990
).
45.
A. G.
Kravchenko
and
P.
Moin
, “
On the effect of numerical errors in large-eddy simulations of turbulent flows
,”
J. Comput. Phys.
131
,
310
(
1997
).
46.
Y.
Morinishi
,
T. S.
Lund
,
O. V.
Vasilyev
, and
P.
Moin
, “
Fully conservative higher order finite difference schemes for incompressible flows
,”
J. Comput. Phys.
143
,
90
(
1998
).
47.
G. A.
Blaisdell
,
E. T.
Spyropoulos
, and
J. H.
Qin
, “
The effect of the formulation of nonlinear terms on aliasing errors in spectral methods
,”
Appl. Numer. Math.
,
21
,
207
(
1996
).
48.
C.
Le Ribault
,
S.
Sarkar
, and
S. A.
Stanley
, “
Large eddy simulation of a plane jet
,”
Phys. Fluids
11
,
3069
(
1999
).
49.
C.
Le Ribault
,
S.
Sarkar
, and
S. A.
Stanley
, “
Large eddy simulation of evolution of a passive scalar in plane jet
,”
AIAA J.
39
1509
(
2001
).
50.
S. B.
Pope
,
Turbulent Flows
(
Cambridge University Press
, Cambridge,
2000
).
51.
J. S.
Bagget
,
J.
Jiménez
, and
A. G.
Kravchenko
, “
Resolution requirements in large-eddy simulations of shear flows
,”
CTR Annual Research Briefs
(
Stanford University
, Stanford,
1997
).
You do not currently have access to this content.