This article presents rotational corrections to the energy stability equation in injection-driven porous enclosures used to simulate solid rocket motors. The evaluation of stability growth rate factors is carried out both numerically and asymptotically. Analytical expressions for the energy stability factors are obtained over a spectrum of physical parameters encompassing solid rocket motor operation. For all representative motors under investigation, the analytical estimates are shown to exhibit negligible errors compared to their numerical values. Both numerics and asymptotics converge in predicting less stable systems than projected by purely irrotational stability theory. The differences can be ascribed to the dismissal of time-dependent rotational coupling in some past formulations. The current study unravels the details of six additional growth rate corrections not accounted for previously. These include the rotational flow, inviscid vortical, viscous, pseudoacoustical, pseudorotational, and unsteady nozzle growth rate factors. The fourth and fifth terms are due to acoustical and vortical interactions with the often neglected pseudopressure. The sixth is due to the energy associated with the unsteady rotational flow exiting the porous enclosure. This study enables us to explain the influence of distinct flow variables on stability. Based on asymptotic approximations for individual growth rates, explicit criteria are presented in the form of critical Mach numbers, penetration numbers, or motor lengths that must not be exceeded in prevention of system instability. The net rotational corrections have been recently appended to the widely used Standard Stability Prediction code.

1.
B.-T.
Chu
and
L. S.G.
Kovásznay
, “
Non-linear interactions in a viscous heat-conducting compressible gas
,”
J. Fluid Mech.
3
,
494
(
1957
).
2.
F. E.C.
Culick
, “
Acoustic oscillations in solid propellant rocket chambers
,”
Astronaut. Acta
12
,
113
(
1966
).
3.
F. E.C.
Culick
, “
Rotational axisymmetric mean flow and damping of acoustic waves in a solid propellant rocket
,”
AIAA J.
4
,
1462
(
1966
).
4.
F. E.C.
Culick
, “
Stability of longitudinal oscillations with pressure and velocity coupling in a solid propellant rocket
,”
Combust. Sci. Technol.
2
,
179
(
1970
).
5.
F. E.C.
Culick
, “
The stability of one-dimensional motions in a rocket motor
,”
Combust. Sci. Technol.
7
,
165
(
1973
).
6.
F. E.C.
Culick
, “
Stability of three-dimensional motions in a rocket motor
,”
Combust. Sci. Technol.
10
,
109
(
1974
).
7.
R. L.
Lovine
,
D. P.
Dudley
, and
R. D.
Waugh
, Vols.
I, II, and III
Report No. AFRPL TR 76-32,
1976
.
8.
G. R.
Nickerson
,
F. E.C.
Culick
, and
L. G.
Dang
, Report No. AFRPL TR-83-017,
1983
.
9.
D. E.
Coats
and
S. S.
Dunn
, “
Improved motor stability predictions for 3D grains using the SPP code
,” in
Proceedings of the 33rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference (JPC)
, Seattle, WA,
1997
.
10.
D. E.
Coats
and
S. S.
Dunn
, Report No. SEA TR 95-02,
1995
.
11.
J. C.
French
,
G. A.
Flandro
, and
J.
Majdalani
, “
Improvements to the linear Standard Stability Prediction (SSP) program
,” in
Proceedings of the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference
, Fort Lauderdale, FL,
2004
.
12.
F. E.C.
Culick
, “
Rotational axisymmetric mean flow and damping of acoustic waves in a solid propellant rocket
,”
J. Propul. Power
5
,
657
(
1989
).
13.
G. A.
Flandro
, AIAA Report No. 95-2530,
1995
.
14.
J.
Majdalani
and
G. A.
Flandro
, “
The oscillatory pipe flow with arbitrary wall injection
,”
Proc. R. Soc. London, Ser. A
458
,
1621
(
2002
).
15.
G. A.
Flandro
, “
Effects of vorticity on rocket combustion stability
,”
J. Propul. Power
11
,
607
(
1995
).
16.
G. A.
Flandro
,
W.
Cai
, and
V.
Yang
, in
Solid Propellant Chemistry, Combustion, and Motor Interior Ballistics
, edited by
V.
Yang
,
T. B.
Brill
, and
W.-Z.
Ren
(
AIAA Progress in Astronautics and Aeronautics
, Washington, DC,
2000
), Vol.
185
, pp.
837
858
.
17.
J.
Majdalani
,
G. A.
Flandro
, and
T. S.
Roh
, “
Convergence of two flowfield models predicting a destabilizing agent in rocket combustion
,”
J. Propul. Power
16
,
492
(
2000
).
18.
J.
Majdalani
and
W. K.
Van Moorhem
, “
Improved time-dependent flowfield solution for solid rocket motors
,”
AIAA J.
36
,
241
(
1998
).
19.
J.
Majdalani
, “
The boundary layer structure in cylindrical rocket motors
,”
AIAA J.
37
,
505
(
1999
).
20.
J.
Majdalani
, “
Vorticity dynamics in isobarically closed porous channels. Part I: Standard perturbations
,”
J. Propul. Power
17
,
355
(
2001
).
21.
J.
Majdalani
and
T. S.
Roh
, “
Vorticity dynamics in isobarically closed porous channels. Part II: Space-reductive perturbations
,”
J. Propul. Power
17
,
363
(
2001
).
22.
J.
Majdalani
and
T. S.
Roh
, “
The oscillatory channel flow with large wall injection
,”
Proc. R. Soc. London, Ser. A
456
,
1625
(
2000
).
23.
F.
Vuillot
and
G.
Avalon
, “
Acoustic boundary layer in large solid propellant rocket motors using Navier–Stokes equations
,”
J. Propul. Power
7
,
231
(
1991
).
24.
T. S.
Roh
,
I. S.
Tseng
, and
V.
Yang
, “
Effects of acoustic oscillations on flame dynamics of homogeneous propellants in rocket motors
,”
J. Propul. Power
11
,
640
(
1995
).
25.
V.
Yang
and
T. S.
Roh
, in
Proceedings of the 31st AIAA/ASME/SAE/ASEE Joint Propulsion Conference
, San Diego, CA,
1995
.
26.
F.
Vuillot
, “
Numerical computation of acoustic boundary layers in large solid propellant space booster
,” in
Proceedings of the 29th Aerospace Sciences Meeting
, Reno, NV,
1991
.
27.
J. D.
Baum
,
J. N.
Levine
, and
R. L.
Lovine
, “
Pulsed instabilities in rocket motors: A comparison between predictions and experiments
,”
J. Propul. Power
4
,
308
(
1988
).
28.
J. D.
Baum
, in
Proceedings of the 25th AIAA/ASME/SAE/ASEE Joint Propulsion Conference
, Monterey, CA,
1989
.
29.
C. W.
Shaeffer
and
R. S.
Brown
, AFOSR Contract No. F04620-90-C-0032,
1990
.
30.
C. W.
Shaeffer
and
R. S.
Brown
, Chemical Systems Div. No. 2060 FR,
1992
.
31.
N.
Lupoglazoff
and
F.
Vuillot
, “
Parietal vortex shedding as a cause of instability for long solid propellant motors. Numerical simulations and comparisons with firing tests
,” in
Proceedings of the 34th Aerospace Sciences Meeting
, Reno, NV,
1996
.
32.
N.
Lupoglazoff
and
F.
Vuillot
, “
Numerical simulations of parietal vortex-shedding phenomenon in a cold-flow set-up
,” in
Proceedings of the 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference
, Cleveland, OH,
1998
.
33.
G. A.
Flandro
and
J.
Majdalani
, “
Aeroacoustic instability in rockets
,”
AIAA J.
41
,
485
(
2003
).
34.
W. K.
Van Moorhem
, “
Flow turning in solid-propellant rocket combustion stability analyses
,”
AIAA J.
20
,
1420
(
1982
).
35.
W. K.
Van Moorhem
, “
An investigation of the origin of the flow turning effect in combustion instability
,” in
17th Joint Army Navy NASA Air Force (JANNAF) Combustion Conference
, Langley, VA,
1980
.
36.
J.
Majdalani
and
W. K.
Van Moorhem
, “
Laminar cold-flow model for the internal gas dynamics of a slab rocket motor
,”
Aerosp. Sci. Technol.
5
,
193
(
2001
).
37.
N.
Lupoglazoff
and
F.
Vuillot
, “
Numerical simulation of vortex shedding phenomenon in two-dimensional test case solid rocket motors
,” in
Proceedings of the 30th Aerospace Sciences Meeting
, Reno, NV,
1992
.
38.
F.
Vuillot
, “
Vortex-shedding phenomena in solid rocket motors
,”
J. Propul. Power
11
,
626
(
1995
).
39.
J.
Dupays
,
M.
Prévost
,
P.
Tarrin
, and
F.
Vuillot
, “
Effects of particulate phase on vortex shedding driven oscillations in solid rocket motors
,” in
Proceedings of the 32nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference
, Orlando, FL,
1996
.
40.
J.
Dupays
, “
Contribution à l’Étude du Rôle de la Phase Condensée dans la Stabilité d’un MPS pour Lanceur Spatial
,”
Ph.D. dissertation
, ONERA,
1996
.
41.
W.-W.
Chu
,
V.
Yang
, and
J.
Majdalani
, “
Premixed flame response to acoustic waves in a porous-walled chamber with surface mass injection
,”
Combust. Flame
133
,
359
(
2003
).
42.
A. B.
Vyas
,
J.
Majdalani
, and
V.
Yang
, “
Estimation of the laminar premixed flame temperature and velocity in injection-driven combustion chambers
,”
Combust. Flame
133
,
371
(
2002
).
43.
G.
Kirchoff
,
Vorlesungen Über Mathematische Physik: Mechanik
, 2nd ed. (
Teubner
, Leibzig,
1877
).
44.
G.
Avalon
and
P.
Comas
, “
Simulative study of the unsteady flow inside a solid propellant rocket motor
,” in
Proceedings of the 27th AIAA/ASME/SAE/ASEE Joint Propulsion Conference
, Sacramento, CA,
1991
.
45.
R. S.
Brown
,
R.
Dunlap
,
S. W.
Young
, and
R. C.
Waugh
, “
Vortex shedding as a source of acoustic energy in segmented solid rockets
,”
J. Spacecr. Rockets
18
,
312
(
1981
).
46.
W.-W.
Chu
,
V.
Yang
, and
J.
Majdalani
, “
Premixed flame response to acoustic waves in a porous-walled chamber with surface mass injection
,”
Combust. Flame
133
,
359
(
2003
).
47.
A. B.
Vyas
,
J.
Majdalani
, and
V.
Yang
, “
Estimation of the laminar premixed flame temperature and velocity in injection-driven combustion chambers
,”
Combust. Flame
133
,
371
(
2003
).
48.
J.
Griffond
and
G.
Casalis
, “
On the nonparallel stability of the injection induced two-dimensional Taylor flow
,”
Phys. Fluids
13
,
1635
(
2001
).
49.
J.
Griffond
and
G.
Casalis
, “
On the dependence on the formulation of some nonparallel stability approaches applied to the Taylor flow
,”
Phys. Fluids
12
,
466
(
2000
).
50.
J.
Griffond
, “
Receptivity and aeroacoustic resonance in channels with blowing walls
,”
Phys. Fluids
14
,
3946
(
2002
).
You do not currently have access to this content.