The steady motion of a viscous fluid in a cylindrical container with a partially rotating bottom wall and a free surface is investigated by means of axisymmetric Navier–Stokes simulations. The flow above the spinning disk at the center of the bottom wall is dominated by an Ekman boundary layer that drives the fluid radially outward. In contrast, an inward flow ensues along the outer, stationary part of the bottom wall, where the radially increasing pressure distribution set up by the rotating fluid motion near the free surface is not balanced by a corresponding centrifugal force. As a result, flow separation occurs at an intermediate radial location close to the outer edge of the rotating disk. Thus a flow configuration results that is dominated by a meridional vortex above the spinning disk, and a counterrotating vortex above the stationary part of the bottom wall. Simulations are conducted for various aspect ratios and Reynolds numbers, in order to evaluate the resulting changes in the vortex breakdown configurations. As the ratio of container radius to disk radius increases above a value of about 2.3, the influence of the lateral container wall on the features of the central flow in the neighborhood of the spinning disk becomes insignificant. By means of a simplified model problem, it is demonstrated that this rapid loss of influence is due to the exponential decay of the azimuthal surface velocity beyond the edge of the disk. This exponential decay is confirmed by the numerical data, and it reflects the fact that as the lateral wall moves outward, the stationary part of the end wall becomes the main sink for the azimuthal momentum of the fluid.

1.
T.
von Karman
, “
Laminare und turbulente Reibung
,”
Z. Angew. Math. Mech.
1
,
233
(
1921
).
2.
H. U.
Vogel
, “
Experimentelle Ergebnisse über die laminare Strömung in einem zylindrischen Gehäuse mit darin rotierender Scheibe
,”
MPI
Bericht 6,
1968
.
3.
H. U.
Vogel
, “
Rückströmungsblasen in Drallströmungen
,” Festschrift 50 Jahre Max-Planck-Institut für Strömungsforschung,
1975
.
4.
M. P.
Escudier
, “
Observations of the flow produced in a cylindrical container by a rotating endwall
,”
Exp. Fluids
2
,
189
(
1984
).
5.
M. R.
Ruith
,
P.
Chen
,
E.
Meiburg
, and
T.
Maxworthy
, “
Three-dimensional vortex breakdown in swirling jets and wakes
,”
J. Fluid Mech.
486
,
331
(
2003
).
6.
M. A.
Herrada
,
M.
Prez-Saborid
, and
A.
Barrero
, “
Vortex breakdown in pipes: Compressibility and 3D effects
,”
Bull. Am. Phys. Soc.
48
,
114
(
2003
).
7.
H. J.
Lugt
and
H. J.
Haussling
, “
Axisymmetric vortex breakdown in rotating fluid with a container
,”
J. Appl. Mech.
49
,
921
(
1982
).
8.
H. J.
Lugt
and
M.
Abboud
, “
Axisymmetric vortex breakdown with and without temperature effects in a container with a rotating lid
,”
J. Fluid Mech.
179
,
179
(
1987
).
9.
J. M.
Lopez
, “
Axisymmetric vortex breakdown. Part 1. Confined swirling flow
,”
J. Fluid Mech.
221
,
533
(
1990
).
10.
G. L.
Brown
and
J. M.
Lopez
, “
Axisymmetric vortex breakdown. Part 2. Physical mechanisms
,”
J. Fluid Mech.
221
,
553
(
1990
).
11.
M. A.
Herrada
and
V.
Shtern
, “
Vortex breakdown control by adding near-axis swirl and temperature gradients
,”
Phys. Rev. E
68
,
041202
(
2003
).
12.
T.
Maxworthy
, “
Laboratory models of rapidly swirling flows with application to atmospheric vortices
,”
Astronaut. Acta
17
,
363
(
1972
).
13.
T.
Maxworthy
, “
A vorticity source for large scale dust devils and other comments on naturally occurring columnar vortices
,”
J. Atmos. Sci.
30
,
1717
(
1973
).
14.
T.
Maxworthy
, “
The laboratory modeling of atmospheric vortices: A critical review
,” in
Proceedings of the IUTAM Conference on Intense Atmospheric Vortices, Reading, England
(
Springer
, New York,
1981
).
15.
A.
Spohn
,
M.
Mory
, and
E. J.
Hopfinger
, “
Observations of vortex breakdown in an open cylindrical container with a rotating bottom
,”
Exp. Fluids
14
,
70
(
1993
).
16.
A.
Spohn
,
M.
Mory
, and
E. J.
Hopfinger
, “
Experiments on vortex breakdown in a confined flow generated by a rotating disk
,”
J. Fluid Mech.
370
,
73
(
1998
).
17.
O.
Daube
, “
Numerical simulation of axisymmetric vortex breakdown in a closed cylinder
,”
Lect. Appl. Math.
28
,
131
(
1991
).
18.
D. T.
Valentine
and
C. C.
Jahnke
, “
Flows induced in a cylinder with both end walls rotating
,”
Phys. Fluids
6
,
2702
(
1994
).
19.
J. M.
Lopez
, “
Unsteady swirling flow in an enclosed cyclinder with reflectional symmetry
,”
Phys. Fluids
7
,
2700
(
1995
).
20.
M.
Brons
,
L. K.
Voight
, and
J. N.
Sorensen
, “
Topology of vortex breakdown bubbles in a cylinder with a rotating bottom and a free surface
,”
J. Fluid Mech.
428
,
133
(
2001
).
21.
J. M.
Lopez
,
F.
Marques
,
A. H.
Hirsa
, and
R.
Miraghaie
, “
Symmetry breaking in free-surface cylinder flows
,”
J. Fluid Mech.
502
,
99
(
2004
).
22.
J. M.
Lopez
and
F.
Marques
, “
Mode competition between rotating waves in a swirling flow with reflection symmetry
,”
J. Fluid Mech.
507
,
265
(
2004
).
23.
D. L.
Young
,
H. J.
Sheen
, and
T. Y.
Hwu
, “
Period-doubling route to chaos for a swirling flow in an open cyclindrical container with a rotating disk
,”
Exp. Fluids
18
,
389
(
1995
).
24.
A. H.
Hirsa
,
J. M.
Lopez
, and
R.
Miraghaie
, “
Symmetry breaking to a rotating wave in a lid-driven cylinder with a free surface: Experimental observation
,”
Phys. Fluids
14
,
L29
(
2002
).
25.
R.
Miraghaie
,
J. M.
Lopez
, and
A. H.
Hirsa
, “
Flow induced patterning at the air/water interface
,”
Phys. Fluids
15
,
L45
(
2003
).
26.
U. T.
Bödewadt
, “
Die Drehströmung über festem Grunde
,”
Z. Angew. Math. Mech.
20
,
241
(
1940
).
27.
C. A.J.
Fletcher
,
Computational Techniques for Fluid Dynamics
(
Springer
, Berlin,
1988
).
28.
W. H.
Press
,
B. P.
Flannery
,
S. A.
Teukolsky
, and
W. T.
Vetterling
,
Numerical Recipes
(
Cambridge University Press
, Cambridge,
1989
).
29.
M.
Piva
, “
Estructuras de recirculación en un contenedor cilindrico
,” Ph.D. thesis,
Universidad de Buenos Aires
,
2000
.
30.
T.
Mulin
,
J. S.
Tavener
,
K. A.
Cliffe
, “
On the creation of stagnation points in a rotating flow
,”
Proc. ASME OED/Intnl. Cong. Sym.
1
,
3
(
1997
).
You do not currently have access to this content.